Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Prevalence of non-aromatic carbonaceous molecules in the inner regions of circumstellar envelopes

Abstract

Evolved stars are foundries of chemical complexity, gas and dust that provide the building blocks of planets and life, and dust nucleation first occurs in their photosphere. The circumstellar regions enveloping these stars, despite their importance, remain hidden to many observations, and dust formation processes are therefore still poorly understood. Laboratory astrophysics provides complementary routes to unveil these chemical processes, but most experiments rely on combustion or plasma decomposition of molecular precursors under physical conditions far removed from those in space. To reproduce and characterize the bottom-up dust formation process, we have built an ultra-high vacuum machine combining atomic gas aggregation with advanced in situ characterization techniques. We show that carbonaceous dust analogues that formed from low-pressure gas-phase condensation of carbon atoms in a hydrogen atmosphere, in a ratio of carbon to molecular hydrogen similar to that reported for evolved stars, lead to the formation of amorphous carbon nanograins and aliphatic carbon clusters. Aromatic species and fullerenes do not form effectively under these conditions, raising implications for a revision of the chemical mechanisms taking place in circumstellar envelopes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Production of stardust analogues.
Fig. 2: Production and structure of the stardust analogues.
Fig. 3: Spectroscopic characterization of the molecular species.
Fig. 4: Ex situ LDI-MS.
Fig. 5: Computed evolution of the molecular species formed.
Fig. 6: Representative mass spectrum from a thermal desorption experiment.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request. Address to J.A.M.-G. for all in situ measurments, J.C. for kinetic calculations and C.J. for LDI experiments.

References

  1. 1.

    Kwok, S. The synthesis of organic and inorganic compounds in evolved stars. Nature 430, 985–991 (2004).

    ADS  Google Scholar 

  2. 2.

    Henning, T. & Salama, F. Carbon in the Universe. Science 282, 2204–2210 (1998).

    ADS  Google Scholar 

  3. 3.

    Meinert, C. et al. Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science 352, 208–212 (2016).

    ADS  Google Scholar 

  4. 4.

    Fonfria, J. P., Cernicharo, J., Richter, M. J. & Lacy, J. H. A detailed analysis of the dust formation zone of IRC +10216 derived from mid‐infrared bands of C2H2 and HCN. Astrophys. J. 673, 445–469 (2008).

    ADS  Google Scholar 

  5. 5.

    Cernicharo, J. et al. Infrared Space Observatory’s discovery of C4H2, C6H2, and benzene in CRL 618. Astrophys. J. Lett. 546, L123–L126 (2001).

    ADS  Google Scholar 

  6. 6.

    Gail, H. & Sedlmayr, E. Physics and Chemistry of Circumstellar Dust Shells (Cambridge Astrophysics Series, Cambridge Univ. Press, 2013).

  7. 7.

    Schlemmer, S., Mutschke, H., Giesen, T. & Jäger, C. (eds) Laboratory Astrochemistry: From Molecules through Nanoparticles to Grains (Wiley, 2014).

  8. 8.

    Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. Nature 318, 162–163 (1985).

    ADS  Google Scholar 

  9. 9.

    Jäger, C., Huisken, F., Mutschke, H., Jansa, I. L. & Henning, T. Formation of polycyclic aromatic hydrocarbons and carbonaceous solids in gas-phase condensation experiments. Astrophys. J. 696, 706–712 (2009).

    ADS  Google Scholar 

  10. 10.

    Biennier, L. et al. Characterization of circumstellar carbonaceous dust analogues produced by pyrolysis of acetylene in a porous graphite reactor. Carbon 47, 3295–3305 (2009).

    Google Scholar 

  11. 11.

    Pino, T. et al. The 6.2 µm band position in laboratory and astrophysical spectra: a tracer of the aliphatic to aromatic evolution of interstellar carbonaceous dust. Astron. Astrophys. 490, 665–672 (2008).

    ADS  Google Scholar 

  12. 12.

    Contreras, C. S. & Salama, F. Laboratory investigations of polycyclic aromatic hydrocarbon formation and destruction in the circumstellar outflows of carbon stars. Astrophys. J. Suppl. Ser. 208, 6 (2013).

    ADS  Google Scholar 

  13. 13.

    Peláez, R. J. et al. Plasma generation and processing of interstellar carbonaceous dust analogs. Plasma Sources Sci. Technol. 27, 035007 (2018).

    ADS  Google Scholar 

  14. 14.

    Fulvio, D., Gobi, S., Jaeger, C., Kereszturi, A. & Henning, T. Laboratory experiments on the low-temperature formation of carbonaceous grains in the ISM. Astrophys. J. Suppl. Ser. 233, 14 (2017).

    ADS  Google Scholar 

  15. 15.

    Peeters, E., Spoon, H. W. W. & Tielens, A. G. G. M. Polycyclic aromatic hydrocarbons as a tracer of star formation? Astrophys. J. 613, 986–1003 (2004).

    ADS  Google Scholar 

  16. 16.

    Cami, J., Bernard-Salas, J., Peeters, E. & Malek, S. E. Detection of C60 and C70 in a young planetary nebula. Science 329, 1180–1182 (2010).

    ADS  Google Scholar 

  17. 17.

    Sellgren, K. et al. C60 in reflection nebulae. Astrophys. J. Lett. 722, L54–L57 (2010).

    ADS  Google Scholar 

  18. 18.

    García-Hernández, D. A. et al. Formation of fullerenes in H-containing planetary nebulae. Astrophys. J. Lett. 724, L39–L43 (2010).

    ADS  Google Scholar 

  19. 19.

    Cordiner, M. A. et al. Confirming interstellar C60 + using the Hubble Space Telescope. Astrophys. J. Lett. 875, L28 (2019).

    ADS  Google Scholar 

  20. 20.

    Kwok, S. & Zhang, Y. Mixed aromatic–aliphatic organic nanoparticles as carriers of unidentified infrared emission features. Nature 479, 80–83 (2011).

    ADS  Google Scholar 

  21. 21.

    Martínez, L. et al. Precisely controlled fabrication, manipulation and in-situ analysis of Cu based nanoparticles. Sci. Rep. 8, 7250 (2018).

    ADS  Google Scholar 

  22. 22.

    Frenklach, M. & Feigelson, E. D. Formation of polycyclic aromatic hydrocarbons in circumstellar envelopes. Astrophys. J. 341, 372–384 (1989).

    ADS  Google Scholar 

  23. 23.

    Ravagnan, L. et al. Cluster-beam deposition and in situ characterization of carbyne-rich carbon films. Phys. Rev. Lett. 89, 285506 (2002).

    Google Scholar 

  24. 24.

    Haberland, H. in Gas-Phase Synthesis of Nanoparticles (ed. Huttel, Y.) 3–21 (Wiley-VCH, 2017).

  25. 25.

    Kratochvíl, J., Kuzminova, A., Kylián, O. & Biederman, H. Comparison of magnetron sputtering and gas aggregation nanoparticle source used for fabrication of silver nanoparticle films. Surf. Coat. Technol. 275, 296–302 (2015).

    Google Scholar 

  26. 26.

    Selwyn, G. S., Weiss, C. A., Sequeda, F. & Huang, C. Particle contamination formation in magnetron sputtering processes. J. Vac. Sci. Technol. A 15, 2023–2028 (1997).

    ADS  Google Scholar 

  27. 27.

    Lodders, K. & Fegley, B. Condensation chemistry of circumstellar grains. Symp. Int. Astron. Union 191, 279–290 (1999).

    Google Scholar 

  28. 28.

    Agúndez, M. et al. Molecular abundances in the inner layers of IRC +10216. Astron. Astrophys. 543, A48 (2012).

    Google Scholar 

  29. 29.

    Yang, X., Chen, P. & He, J. Molecular and dust features of 29 SiC carbon AGB stars. Astron. Astrophys. 414, 1049–1063 (2004).

    ADS  Google Scholar 

  30. 30.

    Bueno, R. A. et al. Highly selective covalent organic functionalization of epitaxial graphene. Nat. Commun. 8, 15306 (2017).

    ADS  Google Scholar 

  31. 31.

    Oyarzabal, E., Doerner, R. P., Shimada, M. & Tynan, G. R. Carbon atom and cluster sputtering under low-energy noble gas plasma bombardment. J. Appl. Phys. 104, 043305 (2008).

  32. 32.

    Cernicharo, J. The polymerization of acetylene, hydrogen cyanide, and carbon chains in the neutral layers of carbon-rich proto-planetary nebulae. Astrophys. J. Lett. 608, L41–L44 (2004).

    ADS  Google Scholar 

  33. 33.

    Contreras, C. S., Sahai, R., de Paz, A. G. & Goodrich, R. Echelle long-slit optical spectroscopy of evolved stars. Astrophys. J. Suppl. Ser. 179, 166–194 (2008).

    ADS  Google Scholar 

  34. 34.

    Sabbah, H. et al. Identification of PAH isomeric structure in cosmic dust analogs: the AROMA setup. Astrophys. J. 843, 34 (2017).

    ADS  Google Scholar 

  35. 35.

    Van Orden, A. & Saykally, R. J. Small carbon clusters: spectroscopy, structure, and energetics. Chem. Rev. 98, 2313–2358 (1998).

    Google Scholar 

  36. 36.

    Joblin, C., Leger, A. & Martin, P. Contribution of polycyclic aromatic hydrocarbon molecules to the interstellar extinction curve. Astrophys. J. 393, L79–L82 (1992).

    ADS  Google Scholar 

  37. 37.

    Agúndez, M., Roueff, E., Le Petit, F. & Le Bourlot, J. The chemistry of disks around T Tauri and Herbig Ae/Be stars. Astron. Astrophys. 616, A19 (2018).

  38. 38.

    Anicich, V. An Index of the Literature for Bimolecular Gas Phase Cation-Molecule Reaction Kinetics JPL Publication 03-19 (JPL, NASA, 2003).

  39. 39.

    Clary, D. C. et al. C + C2H2: a key reaction in interstellar chemistry. J. Phys. Chem. A 106, 5541–5552 (2002).

    Google Scholar 

  40. 40.

    Pitts, W. M., Pasternack, L. & McDonald, J. R. Temperature dependence of the C2(X1Σg +) reaction with H2 and CH4 and C2(X1Σg + and a 3Πu equilibrated states) with O2. Chem. Phys. 68, 417–422 (1982).

    Google Scholar 

  41. 41.

    Lodders, K. & Fegley, B. Condensation chemistry of carbon stars. AIP Conf. Proc. 402, 391–423 (1997).

  42. 42.

    Martin, P. G. & Rogers, C. Carbon grains in the envelope of IRC +10216. Astrophys. J. 322, 374–392 (1987).

    ADS  Google Scholar 

  43. 43.

    Kramida, A., Ralchenko, Yu., Reader, J. & NIST ASD Team NIST Atomic Spectra Database Version 5.6.1 (NIST, 2018); https://doi.org/10.18434/T4W30F

  44. 44.

    Alyabyev, S. B. & Beletskaya, I. P. Gold as a catalyst. Part II. Alkynes in the reactions of carbon–carbon bond formation. Russ. Chem. Rev. 87, 984–1047 (2018).

    ADS  Google Scholar 

  45. 45.

    Zaera, F. Surface chemistry of hydrocarbon fragments on transition metals: towards understanding catalytic processes. Catal. Lett. 91, 1–10 (2003).

    Google Scholar 

  46. 46.

    Zhao, L. et al. Pyrene synthesis in circumstellar envelopes and its role in the formation of 2D nanostructures. Nat. Astron. 2, 413–419 (2018).

    ADS  Google Scholar 

  47. 47.

    Merino, P. et al. Graphene etching on SiC grains as a path to interstellar polycyclic aromatic hydrocarbons formation. Nat. Commun. 5, 3054 (2014).

    ADS  Google Scholar 

  48. 48.

    Tian, M. et al. Catalytic conversion of acetylene to polycyclic aromatic hydrocarbons over particles of pyroxene and alumina. Phil. Trans. R. Soc. A 371, 20110590 (2013).

    ADS  Google Scholar 

  49. 49.

    Cherchneff, I., Barker, J. R. & Tielens, A. G. G. M. Polycyclic aromatic hydrocarbon formation in carbon-rich stellar envelopes. Astrophys. J. 401, 269–287 (1992).

    ADS  Google Scholar 

  50. 50.

    Cherchneff, I. & Cau, P. The chemistry of carbon dust formation. Symp. Int. Astron. Union 191 251–260 (1999).

  51. 51.

    Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    ADS  Google Scholar 

  52. 52.

    Strohalm, M., Kavan, D., Novák, P., Volný, M. & Havlíček, V. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal. Chem. 82, 4648–4651 (2010).

    Google Scholar 

  53. 53.

    Marshall, A. G. & Rodgers, R. P. Petroleomics: chemistry of the underworld. Proc. Natl Acad. Sci. USA 105, 18090–18095 (2008).

    ADS  Google Scholar 

  54. 54.

    Koch, B. P. & Dittmar, T. From mass to structure: an aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom. 20, 926–932 (2006).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank the European Research Council for funding support under Synergy Grant ERC-2013-SyG, G.A. 610256 (NANOCOSMOS). We also acknowledge partial support from the Spanish Research Agency (AEI) through grants MAT2017-85089-c2-1R, FIS2016-77578-R and FIS2016-77726-C3-1-P. Support from the FotoArt-CM Project (P2018/NMT-4367) through the Program of R&D activities between research groups in Technologies 2013, cofinanced by European Structural Funds, is also recognized.

Author information

Affiliations

Authors

Contributions

In situ experiments in Stardust were performed by L.M., G.S., P.M. and M.Accolla; C.J. and H.S. performed LDI experiments; P.M., K.L., R.O. and A.M.-J. performed STM. L.M. performed AFM. R.J.P., V.J.H. and I.T. performed the OES experiments. M.Agúndez made the kinetic calculations. G.J.E. and J.A.M.-G. wrote the first version of the manuscript. J.A.M.-G. supervised in situ experiments, and C.J. and J.C. supervised the astrochemical interpretation. All authors discussed and contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Christine Joblin, José Cernicharo or José A. Martín-Gago.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Farid Salama and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, references, Figs. 1–6 and Tables 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martínez, L., Santoro, G., Merino, P. et al. Prevalence of non-aromatic carbonaceous molecules in the inner regions of circumstellar envelopes. Nat Astron 4, 97–105 (2020). https://doi.org/10.1038/s41550-019-0899-4

Download citation

Further reading

Search

Quick links