Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A dearth of small members in the Haumea family revealed by OSSOS

Abstract

While collisional families are common in the asteroid belt, only one is known in the Kuiper belt, linked to the dwarf planet Haumea. The characterization of Haumea’s family helps to constrain its origin and, more generally, the collisional history of the Kuiper belt. However, the size distribution of the Haumea family is difficult to constrain from the known sample, which is affected by discovery biases. Here, we use the Outer Solar System Origins Survey (OSSOS) Ensemble to look for Haumea family members. In this OSSOS XVI study we report the detection of three candidates with small ejection velocities relative to the family formation centre. The largest discovery, 2013 UQ15, is conclusively a Haumea family member, with a low ejection velocity and neutral surface colours. Although the OSSOS Ensemble is sensitive to Haumea family members to a limiting absolute magnitude (Hr) of 9.5 (inferred diameter of ~90 km), the smallest candidate is significantly larger, Hr = 7.9. The Haumea family members larger than 20 km in diameter must be characterized by a shallow H-distribution slope in order to produce only these three large detections. This shallow size distribution suggests that the family formed in a graze-and-merge scenario, not a catastrophic collision.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Comparison of the isotropic and graze-and-merge models.
Fig. 2: Absolute magnitude distributions compared to OSSOS Ensemble detections.
Fig. 3: Absolute magnitude distributions compared to Pan-STARRS1 detections.

Data availability

The data that support the plots within this paper are available from the corresponding author upon reasonable request.

Code availability

The survey simulator is available publicly from the OSSOS webpages: http://www.ossos-survey.org/simulator.html. A detailed description of usage is available29.

References

  1. 1.

    Brown, M. E., Barkume, K. M., Ragozzine, D. & Schaller, E. L. A collisional family of icy objects in the Kuiper belt. Nature 446, 294–296 (2007).

    ADS  Article  Google Scholar 

  2. 2.

    Ragozzine, D. & Brown, M. E. Candidate members and age estimate of the family of Kuiper belt object 2003 EL61. Astron. J. 134, 2160–2167 (2007).

    ADS  Article  Google Scholar 

  3. 3.

    Rabinowitz, D. L., Schaefer, B. E., Schaefer, M. & Tourtellotte, S. W. The youthful appearance of the 2003 EL61 collisional family. Astron. J. 136, 1502–1509 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    Carry, B., Snodgrass, C., Lacerda, P., Hainaut, O. & Dumas, C. Characterisation of candidate members of (136108) Haumea’s family. II. Follow-up observations. Astron. Astrophys. 544, A137 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    Volk, K. & Malhotra, R. The effect of orbital evolution on the Haumea (2003 EL61) collisional family. Icarus 221, 106–115 (2012).

    ADS  Article  Google Scholar 

  6. 6.

    Parker, A. et al. The size distributions of asteroid families in the SDSS Moving Object Catalog 4. Icarus 198, 138–155 (2008).

    ADS  Article  Google Scholar 

  7. 7.

    Proudfoot, B. & Ragozzine, D. A. Modeling the formation of the collisional family of the dwarf planet Haumea. Astron. J. 157, 230 (2019).

    ADS  Article  Google Scholar 

  8. 8.

    Schlichting, H. E. & Sari, R. The creation of Haumea’s collisional family. Astrophys. J. 700, 1242–1246 (2009).

    ADS  Article  Google Scholar 

  9. 9.

    Leinhardt, Z. M., Marcus, R. A. & Stewart, S. T. The formation of the collisional family around the dwarf planet Haumea. Astrophys. J. 714, 1789–1799 (2010).

    ADS  Article  Google Scholar 

  10. 10.

    Fraser, W. C. & Kavelaars, J. J. The size distribution of Kuiper belt objects for D ≥ 10 km. Astron. J. 137, 72–82 (2009).

    ADS  Article  Google Scholar 

  11. 11.

    Dohnanyi, J. S. Collisional model of asteroids and their debris. J. Geophys. Res. 74, 2531–2554 (1969).

    ADS  Article  Google Scholar 

  12. 12.

    Bannister, M. T. et al. OSSOS. VII. 800+ trans-Neptunian objects—the complete data release. Astrophys. J. Suppl. Ser. 236, 18 (2018).

    ADS  Article  Google Scholar 

  13. 13.

    Petit, J.-M. et al. The Canada-France Ecliptic Plane Survey—full data release: the orbital structure of the Kuiper belt. Astron. J. 142, 131 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    Petit, J.-M. et al. The Canada-France Ecliptic Plane Survey (CFEPS)—high-latitude component. Astron. J. 153, 236 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Alexandersen, M. et al. A carefully characterized and tracked trans-Neptunian survey: the size distribution of the plutinos and the number of Neptunian trojans. Astron. J. 152, 111 (2016).

    ADS  Article  Google Scholar 

  16. 16.

    Rein, H. & Liu, S.-F. REBOUND: an open-source multi-purpose N-body code for collisional dynamics. Astron. Astrophys. 537, A128 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    Pike, R. E. et al. Col-OSSOS: z-Band photometry reveals three distinct TNO surface types. Astron. J. 154, 101 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Schwamb, M. E. et al. Col-OSSOS: the Colors of the Outer Solar System Origins Survey. Astrophys. J. Suppl. Ser. 243, 12 (2019).

    ADS  Article  Google Scholar 

  19. 19.

    Anderson, T. W. & Darling, D. A. A test of goodness of fit. J. Am. Stat. Assoc. 49, 765–769 (1954).

    Article  Google Scholar 

  20. 20.

    Lawler, S. M. et al. OSSOS. VIII. The transition between two size distribution slopes in the scattering disk. Astron. J. 155, 197 (2018).

    ADS  Article  Google Scholar 

  21. 21.

    Fraser, W. C., Brown, M. E., Morbidelli, A., Parker, A. & Batygin, K. The absolute magnitude distribution of Kuiper belt objects. Astrophys. J. 782, 100 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    Vilenius, E. et al. TNOs are Cool: a survey of the trans-Neptunian region. XIV. Size/albedo characterization of the Haumea family observed with Herschel and Spitzer. Astron. Astrophys. 618, A136 (2018).

    Article  Google Scholar 

  23. 23.

    Petit, J.-M., Kavelaars, J. J., Gladman, B. & Loredo, T. in The Solar System Beyond Neptune (eds Barucci, M. A. et al.) 71–87 (University of Arizona Press, 2008).

  24. 24.

    Lykawka, P. S., Horner, J., Mukai, T. & Nakamura, A. M. The dynamical evolution of dwarf planet (136108) Haumea’s collisional family: general properties and implications for the trans-Neptunian belt. Mon. Not. R. Astron. Soc. 421, 1331–1350 (2012).

    ADS  Article  Google Scholar 

  25. 25.

    Ivezic, Z. et al. Large Synoptic Survey Telescope: from science drivers to reference design. Serb. Astron. J. 176, 1–13 (2008).

    ADS  Article  Google Scholar 

  26. 26.

    Ortiz, J. L. et al. Rotational fission of trans-Neptunian objects: the case of Haumea. Mon. Not. R. Astron. Soc. 419, 2315–2324 (2012).

    ADS  Article  Google Scholar 

  27. 27.

    Campo Bagatin, A., Benavidez, P. G., Ortiz, J. L. & Gil-Hutton, R. On the genesis of the Haumea system. Mon. Not. R. Astron. Soc. 461, 2060–2067 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    Leinhardt, Z. M. & Stewart, S. T. Collisions between gravity-dominated bodies. I. Outcome regimes and scaling laws. Astrophys. J. 745, 79 (2012).

    ADS  Article  Google Scholar 

  29. 29.

    Lawler, S. M. et al. OSSOS: X. How to use a survey simulator: statistical testing of dynamical models against the real Kuiper belt. Front. Astron. Space Sci. 5, 14 (2018).

    ADS  Article  Google Scholar 

  30. 30.

    Shankman, C., Gladman, B. J., Kaib, N., Kavelaars, J. J. & Petit, J. M. A possible divot in the size distribution of the Kuiper belt’s scattering objects. Astro. J. Lett. 764, L2 (2013).

    ADS  Article  Google Scholar 

  31. 31.

    Vilenius, E. et al. ‘TNOs are Cool’: a survey of the trans-Neptunian region. X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations. Astron. Astrophys. 564, A35 (2014).

    Article  Google Scholar 

  32. 32.

    Ortiz, J. L. et al. The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation. Nature 550, 219–223 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Müller, T. et al. Haumea’s thermal emission revisited in the light of the occultation results. Icarus https://doi.org/10.1016/j.icarus.2018.11.011 (2019).

    Article  Google Scholar 

  34. 34.

    Fornasier, S. et al. TNOs are Cool: A survey of the trans-Neptunian region. VIII. Combined Herschel PACS and Spire observations of nine bright targets at 70–500 μm. Astron. Astrophys. 555, A15 (2013).

    Article  Google Scholar 

  35. 35.

    Elliot, J. L. et al. Size and albedo of Kuiper belt object 55636 from a stellar occultation. Nature 465, 897–900 (2010).

    ADS  Article  Google Scholar 

  36. 36.

    Lellouch, E. et al. ‘TNOs are Cool’: A survey of the trans-Neptunian region. IX. Thermal properties of Kuiper belt objects and centaurs from combined Herschel and Spitzer observations. Astron. Astrophys. 557, A60 (2013).

    Article  Google Scholar 

  37. 37.

    Holmberg, J., Flynn, C. & Portinari, L. The colours of the Sun. Mon. Not. R. Astron. Soc. 367, 449–453 (2006).

    ADS  Article  Google Scholar 

  38. 38.

    Denneau, L. et al. The Pan-STARRS Moving Object Processing System. Publ. Astron. Soc. Pac. 125, 357 (2013).

    ADS  Article  Google Scholar 

  39. 39.

    Magnier, E. A. et al. The Pan-STARRS 1 photometric reference ladder, release 12.01. Astrophys. J. Suppl. Ser. 205, 20 (2013).

    ADS  Article  Google Scholar 

  40. 40.

    Lin, H. W. et al. The Pan-STARRS 1 discoveries of five new Neptune trojans. Astron. J. 152, 147 (2016).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada–France–Hawaii Telescope (CFHT) that is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France and the University of Hawaii. We recognize and acknowledge the very significant cultural role of the summit of Maunakea. We are most fortunate to have the opportunity to conduct observations from this mountain. B.C.N.P., D.R. and S.M. acknowledge support from a BYU Mentored Environment Grant.

Author information

Affiliations

Authors

Contributions

R.E.P. tested the models using the survey simulator, determined the mass and population estimate, and wrote most of the paper draft. B.C.N.P. generated the orbital distribution models used, and S.M., D.R. and B.C.N.P. classified the objects as Haumea family member candidates. M.A. assisted with the mass estimate and generating the approximate Pan-STARRS1 survey simulator blocks. M.A., M.T.B., Y.-T.C., B.J.G., J.J.K., S.G. and K.V. did the object detections and survey characterization for the OSSOS survey.

Corresponding author

Correspondence to Rosemary E. Pike.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pike, R.E., Proudfoot, B.C.N., Ragozzine, D. et al. A dearth of small members in the Haumea family revealed by OSSOS. Nat Astron 4, 89–96 (2020). https://doi.org/10.1038/s41550-019-0867-z

Download citation

Search

Quick links