Observational properties of thermonuclear supernovae

Abstract

The explosive death of a star as a supernova is one of the most dramatic events in the Universe. Supernovae have an outsized impact on many areas of astrophysics: they are major contributors to the chemical enrichment of the cosmos and significantly influence the formation of subsequent generations of stars and the evolution of galaxies. Here we review the observational properties of thermonuclear supernovae—exploding white dwarf stars resulting from the stellar evolution of low-mass stars in close binary systems. The best known objects in this class are type-Ia supernovae (SNe Ia), astrophysically important in their application as standardizable candles to measure cosmological distances and the primary source of iron group elements in the Universe. Surprisingly, given their prominent role, SN Ia progenitor systems and explosion mechanisms are not fully understood; the observations we describe here provide constraints on models, not always in consistent ways. Recent advances in supernova discovery and follow-up have shown that the class of thermonuclear supernovae includes more than just SNe Ia, and we characterize that diversity in this review.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Lightcurves of SNe Ia.
Fig. 2: Homogeneous optical spectra of SNe Ia.
Fig. 3: Lightcurve shape standardization of SNe Ia.
Fig. 4: Early-time SN Ia lightcurves.
Fig. 5: SN Ia nebular spectroscopy and line shifts.
Fig. 6: The effect of environment on SN Ia standardization.
Fig. 7: The thermonuclear supernova zoo.
Fig. 8: Optical and near-infrared spectroscopy of thermonuclear supernovae.

References

  1. 1.

    Minkowski, R. Spectra of supernovae. Publ. Astron. Soc. Pac. 53, 224–225 (1941).

  2. 2.

    Filippenko, A. V. Optical spectra of supernovae. Annu. Rev. Astron. Astrophys. 35, 309–355 (1997).

  3. 3.

    Gal-Yam, A. Observational and physical classification of supernovae. In Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 195–237 (Springer, 2017).

  4. 4.

    Bloom, J. S. et al. A compact degenerate primary-star progenitor of SN 2011fe. Astrophys. J. Lett. 744, L17 (2012).

  5. 5.

    Churazov, E. et al. Cobalt-56 γ-ray emission lines from the type Ia supernova 2014J. Nature 512, 406–408 (2014).

  6. 6.

    Piro, A. L. & Nakar, E. What can we learn from the rising light curves of radioactively powered supernovae? Astrophys. J. 769, 67 (2013).

  7. 7.

    Diehl, R. et al. Early 56Ni decay gamma rays from SN2014J suggest an unusual explosion. Science 345, 1162–1165 (2014).

  8. 8.

    Phillips, M. M. The absolute magnitudes of type Ia supernovae. Astrophys. J. Lett. 413, L105–L108 (1993).

  9. 9.

    Riess, A. G. et al. Observational evidence from supernovae for an accelerating Universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

  10. 10.

    Perlmutter, S. et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999).

  11. 11.

    Riess, A. G. et al. A 2.4% determination of the local value of the Hubble constant. Astrophys. J. 826, 56 (2016).

  12. 12.

    Nomoto, K., Kobayashi, C. & Tominaga, N. Nucleosynthesis in stars and the chemical enrichment of galaxies. Annu. Rev. Astron. Astrophys. 51, 457–509 (2013).

  13. 13.

    Hillebrandt, W., Kromer, M., Röpke, F. K. & Ruiter, A. J. Towards an understanding of Type Ia supernovae from a synthesis of theory and observations. Front. Phys. 8, 116–143 (2013).

  14. 14.

    Alsabti, A. W. & Murdin, P. (eds) Handbook of Supernovae (Springer, 2017).

  15. 15.

    Branch, D. & Wheeler, J. C. Supernova Explosions (Springer, 2017).

  16. 16.

    Modjaz, M., Gutiérrez, C. P. & Arcavi, I. New regimes in the observation of core-collapse supernovae. Nat. Astron. https://doi.org/10.1038/s41550-019-0856-2 (2019).

  17. 17.

    Inserra, C. Observational properties of extreme supernovae. Nat. Astron. https://doi.org/10.1038/s41550-019-0854-4 (2019).

  18. 18.

    Pankey, T. Jr Possible Thermonuclear Activities in Natural Terrestrial Minerals. PhD thesis, Howard Univ. (1962).

  19. 19.

    Colgate, S. A. & McKee, C. Early supernova luminosity. Astrophys. J. 157, 623–643 (1969).

  20. 20.

    Arnett, W. D. Type I supernovae. I - Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982).

  21. 21.

    Katz, B., Kushnir, D. & Dong, S. An exact integral relation between the Ni56 mass and the bolometric light curve of a type Ia supernova. Preprint at https://arxiv.org/abs/1301.6766 (2013).

  22. 22.

    Khatami, D. K. & Kasen, D. N. Physics of luminous transient light curves: A new relation between peak time and luminosity. Astrophys. J. 878, 56 (2019).

  23. 23.

    Kasen, D. Secondary maximum in the near-infrared light curves of type Ia supernovae. Astrophys. J. 649, 939–953 (2006).

  24. 24.

    Kromer, M. et al. Double-detonation sub-Chandrasekhar supernovae: Synthetic observables for minimum helium shell mass models. Astrophys. J. 719, 1067–1082 (2010).

  25. 25.

    Nugent, P. E. et al. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star. Nature 480, 344–347 (2011).

  26. 26.

    Nugent, P., Phillips, M., Baron, E., Branch, D. & Hauschildt, P. Evidence for a spectroscopic sequence among type 1a Supernovae. Astrophys. J. Lett. 455, L147–L150 (1995).

  27. 27.

    Hachinger, S., Mazzali, P. A., Tanaka, M., Hillebrandt, W. & Benetti, S. Spectral luminosity indicators in Type Ia supernovae. Understanding the (SiII) line-strength ratio and beyond. Mon. Not. R. Astron. Soc. 389, 1087–1096 (2008).

  28. 28.

    Silverman, J. M., Ganeshalingam, M. & Filippenko, A. V. Berkeley Supernova Ia Program - V. Late-time spectra of Type Ia supernovae. Mon. Not. R. Astron. Soc. 430, 1030–1041 (2013).

  29. 29.

    Graham, M. L. et al. Nebular-phase spectra of nearby Type Ia Supernovae. Mon. Not. R. Astron. Soc. 472, 3437–3454 (2017).

  30. 30.

    Taubenberger, S. et al. Spectroscopy of the Type Ia supernova 2011fe past 1000 d. Mon. Not. R. Astron. Soc. 448, L48–L52 (2015).

  31. 31.

    Fransson, C. & Jerkstrand, A. Reconciling the infrared catastrophe and observations of SN 2011fe. Astrophys. J. Lett. 814, L2 (2015).

  32. 32.

    Hamuy, M. et al. The absolute luminosities of the Calan/Tololo type Ia supernovae. Astron. J. 112, 2391–2397 (1996).

  33. 33.

    Guy, J. et al. SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators. Astron. Astrophys. 466, 11–21 (2007).

  34. 34.

    Jha, S., Riess, A. G. & Kirshner, R. P. Improved distances to type Ia supernovae with multicolor light-curve shapes: MLCS2k2. Astrophys. J. 659, 122–148 (2007).

  35. 35.

    Burns, C. R. et al. The Carnegie Supernova Project: Light-curve fitting with SNooPy. Astron. J. 141, 19 (2011).

  36. 36.

    Krisciunas, K., Phillips, M. M. & Suntzeff, N. B. Hubble diagrams of type Ia supernovae in the near-infrared. Astrophys. J. 602, L81–L84 (2004).

  37. 37.

    Barone-Nugent, R. L. et al. Near-infrared observations of Type Ia supernovae: the best known standard candle for cosmology. Mon. Not. R. Astron. Soc. 425, 1007–1012 (2012).

  38. 38.

    Dhawan, S., Jha, S. W. & Leibundgut, B. Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles. Astron. Astrophys. 609, A72 (2018).

  39. 39.

    Burns, C. R. et al. The Carnegie Supernova Project: Absolute calibration and the Hubble constant. Astrophys. J. 869, 56 (2018).

  40. 40.

    Burns, C. R. et al. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae. Astrophys. J. 789, 32 (2014).

  41. 41.

    Li, W. et al. Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature 480, 348–350 (2011).

  42. 42.

    Schaefer, B. E. & Pagnotta, A. An absence of ex-companion stars in the type Ia supernova remnant SNR 0509–67.5. Nature 481, 164–166 (2012).

  43. 43.

    Kerzendorf, W. E. et al. A high-resolution spectroscopic search for the remaining donor for Tycho’s supernova. Astrophys. J. 774, 99 (2013).

  44. 44.

    Kerzendorf, W. E. et al. A search for a surviving companion in SN 1006. Mon. Not. R. Astron. Soc. 479, 192–199 (2018).

  45. 45.

    Ruiz-Lapuente, P. et al. No surviving companion in Kepler’s supernova. Astrophys. J. 862, 124 (2018).

  46. 46.

    Shen, K. J. et al. Three hypervelocity white dwarfs in Gaia DR2: Evidence for dynamically driven double-degenerate double-detonation type Ia supernovae. Astrophys. J. 865, 15 (2018).

  47. 47.

    Hosseinzadeh, G. et al. Early blue excess from the type Ia supernova 2017cbv and implications for its progenitor. Astrophys. J. Lett. 845, L11 (2017).

  48. 48.

    Olling, R. P. et al. No signature of ejecta interaction with a stellar companion in three type Ia supernovae. Nature 521, 332–335 (2015).

  49. 49.

    Dimitriadis, G. et al. K2 Observations of SN 2018oh reveal a two-component rising light curve for a type Ia supernova. Astrophys. J. 870, L1 (2019).

  50. 50.

    Shappee, B. J. et al. Seeing double: ASASSN-18bt exhibits a two-component rise in the early-time K2 light curve. Astrophys. J. 870, 13 (2019).

  51. 51.

    Fausnaugh, M. M. et al. Early time light curves of 18 bright type Ia supernovae observed with TESS. Preprint at https://arxiv.org/abs/1904.02171 (2019).

  52. 52.

    Piro, A. L. & Nakar, E. What can we learn from the rising light curves of radioactively powered supernovae? Astrophys. J. 769, 67 (2013).

  53. 53.

    Maeda, K., Jiang, J.-a, Shigeyama, T. & Doi, M. Type Ia supernovae in the first few days: Signatures of helium detonation versus interaction. Astrophys. J. 861, 78 (2018).

  54. 54.

    Magee, M. R., Sim, S. A., Kotak, R. & Kerzendorf, W. E. Modelling the early time behaviour of type Ia supernovae: effects of the 56Ni distribution. Astron. Astrophys. 614, A115 (2018).

  55. 55.

    Stritzinger, M. D. et al. Red versus blue: Early observations of thermonuclear supernovae reveal two distinct populations? Astrophys. J. Lett. 864, L35 (2018).

  56. 56.

    Polin, A., Nugent, P. & Kasen, D. Observational predictions for sub-Chandrasekhar mass explosions: Further evidence for multiple progenitor systems for type Ia supernovae. Astrophys. J. 873, 84 (2019).

  57. 57.

    Hayden, B. T. et al. The rise and fall of type Ia supernova light curves in the SDSS-II supernova survey. Astrophys. J. 712, 350–366 (2010).

  58. 58.

    Firth, R. E. et al. The rising light curves of Type Ia supernovae. Mon. Not. R. Astron. Soc. 446, 3895–3910 (2015).

  59. 59.

    Chomiuk, L. et al. A deep search for prompt radio emission from thermonuclear supernovae with the very large array. Astrophys. J. 821, 119 (2016).

  60. 60.

    Russell, B. R. & Immler, S. Swift X-ray upper limits on type Ia supernova environments. Astrophys. J. Lett. 748, L29 (2012).

  61. 61.

    Horesh, A. et al. Early radio and X-ray observations of the youngest nearby type Ia supernova PTF 11kly (SN 2011fe). Astrophys. J. 746, 21 (2012).

  62. 62.

    Margutti, R. et al. No X-rays from the very nearby type Ia SN 2014J: Constraints on its environment. Astrophys. J. 790, 52 (2014).

  63. 63.

    Patat, F. et al. Detection of circumstellar material in a normal type Ia supernova. Science 317, 924–926 (2007).

  64. 64.

    Ferretti, R. et al. Time-varying sodium absorption in the Type Ia supernova 2013gh. Astron. Astrophys. 592, A40 (2016).

  65. 65.

    Sternberg, A. et al. Circumstellar material in type Ia supernovae via sodium absorption features. Science 333, 856–859 (2011).

  66. 66.

    Maguire, K. et al. A statistical analysis of circumstellar material in Type Ia supernovae. Mon. Not. R. Astron. Soc. 436, 222–240 (2013).

  67. 67.

    Phillips, M. M. et al. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption. Astrophys. J. 779, 38 (2013).

  68. 68.

    Mazzali, P. A. et al. High-velocity features: A ubiquitous property of type Ia supernovae. Astrophys. J. 623, L37–L40 (2005).

  69. 69.

    Zhao, X. et al. The silicon and calcium high-velocity features in type Ia supernovae from early to maximum phases. Astrophys. J. Suppl. Ser. 220, 20 (2015).

  70. 70.

    Blondin, S., Dessart, L., Hillier, D. J. & Khokhlov, A. M. One-dimensional delayed-detonation models of Type Ia supernovae: confrontation to observations at bolometric maximum. Mon. Not. R. Astron. Soc. 429, 2127–2142 (2013).

  71. 71.

    Hamuy, M. et al. An asymptotic-giant-branch star in the progenitor system of a type Ia supernova. Nature 424, 651–654 (2003).

  72. 72.

    Dilday, B. et al. PTF 11kx: A type Ia supernova with a symbiotic nova progenitor. Science 337, 942–945 (2012).

  73. 73.

    Silverman, J. M. et al. Type Ia supernovae strongly interacting with their circumstellar medium. Astrophys. J. Suppl. Ser. 207, 3 (2013).

  74. 74.

    Graham, M. L. et al. Delayed circumstellar interaction for type Ia SN 2015cp revealed by an HST ultraviolet imaging survey. Astrophys. J. 871, 62 (2019).

  75. 75.

    Mattila, S. et al. Early and late time VLT spectroscopy of SN 2001el - progenitor constraints for a type Ia supernova. Astron. Astrophys. 443, 649–662 (2005).

  76. 76.

    Leonard, D. C. Constraining the type Ia supernova progenitor: The search for hydrogen in nebular spectra. Astrophys. J. 670, 1275–1282 (2007).

  77. 77.

    Lundqvist, P. et al. Hydrogen and helium in the spectra of Type Ia supernovae. Mon. Not. R. Astron. Soc. 435, 329–345 (2013).

  78. 78.

    Shappee, B. J., Stanek, K. Z., Pogge, R. W. & Garnavich, P. M. No stripped hydrogen in the nebular spectra of nearby type Ia supernova 2011fe. Astrophys. J. Lett. 762, L5 (2013).

  79. 79.

    Lundqvist, P. et al. No trace of a single-degenerate companion in late spectra of supernovae 2011fe and 2014. J. Astron. Astrophys. 577, A39 (2015).

  80. 80.

    Maguire, K. Type Ia supernovae. In Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 293–316 (Springer, 2017).

  81. 81.

    Shappee, B. J. et al. Strong evidence against a non-degenerate companion in SN 2012cg. Astrophys. J. 855, 6 (2018).

  82. 82.

    Sand, D. J. et al. Nebular spectroscopy of the “blue bump” type Ia supernova 2017cbv. Astrophys. J. 863, 24 (2018).

  83. 83.

    Tucker, M. A., Shappee, B. J. & Wisniewski, J. P. No stripped companion material in the nebular spectrum of the “two-component” type Ia supernova ASASSN-18bt. Astrophys. J. 872, L22 (2019).

  84. 84.

    Sand, D. J. et al. Nebular Hα limits for fast declining SNe Ia. Astrophys. J. 877, L4 (2019).

  85. 85.

    Kollmeier, J. A. et al. Hα emission in the nebular spectrum of the Type Ia supernova ASASSN-18tb. Mon. Not. R. Astron. Soc. 486, 3041–3046 (2019).

  86. 86.

    Vallely, P. J. et al. ASASSN-18tb: a most unusual Type Ia supernova observed by TESS and SALT. Mon. Not. R. Astron. Soc. 487, 2372–2384 (2019).

  87. 87.

    Parrent, J. T. et al. A study of carbon features in type Ia supernova spectra. Astrophys. J. 732, 30 (2011).

  88. 88.

    Thomas, R. C. et al. Type Ia supernova carbon footprints. Astrophys. J. 743, 27 (2011).

  89. 89.

    Blondin, S. et al. The spectroscopic diversity of type Ia supernovae. Astron. J. 143, 126 (2012).

  90. 90.

    Folatelli, G. et al. Unburned material in the ejecta of type Ia supernovae. Astrophys. J. 745, 74 (2012).

  91. 91.

    Silverman, J. M. & Filippenko, A. V. Berkeley Supernova Ia Program - IV. Carbon detection in early-time optical spectra of Type Ia supernovae. Mon. Not. R. Astron. Soc. 425, 1917–1933 (2012).

  92. 92.

    Maguire, K. et al. Exploring the spectral diversity of low-redshift Type Ia supernovae using the Palomar Transient Factory. Mon. Not. R. Astron. Soc. 444, 3258–3274 (2014).

  93. 93.

    Heringer, E., van Kerkwijk, M. H., Sim, S. A., Kerzendorf, W. E. & Graham, M. L. Spectral sequences of type Ia supernovae. II. Carbon as a diagnostic tool for explosion mechanisms. Astrophys. J. 871, 250 (2019).

  94. 94.

    Zhao, X. et al. The oxygen features in type Ia supernovae and implications for the nature of thermonuclear explosions. Astrophys. J. 826, 211 (2016).

  95. 95.

    Ashall, C. et al. Photometric and spectroscopic observations, and abundance tomography modelling of the Type Ia supernova SN 2014J located in M82. Mon. Not. R. Astron. Soc. 445, 4427–4437 (2014).

  96. 96.

    Ma, H., Woosley, S. E., Malone, C. M., Almgren, A. & Bell, J. Carbon deflagration in type Ia supernova. I. Centrally ignited models. Astrophys. J. 771, 58 (2013).

  97. 97.

    Brown, P. J., Baron, E., Milne, P., Roming, P. W. A. & Wang, L. Theoretical clues to the ultraviolet diversity of type Ia supernovae. Astrophys. J. 809, 37 (2015).

  98. 98.

    Foley, R. J. et al. Ultraviolet diversity of Type Ia supernovae. Mon. Not. R. Astron. Soc. 461, 1308–1316 (2016).

  99. 99.

    Maguire, K. et al. Using late-time optical and near-infrared spectra to constrain Type Ia supernova explosion properties. Mon. Not. R. Astron. Soc. 477, 3567–3582 (2018).

  100. 100.

    Seitenzahl, I. R. & Townsley, D. M. Nucleosynthesis in thermonuclear supernovae. In Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 1955–1978 (Springer, 2017).

  101. 101.

    Leonard, D. C., Li, W., Filippenko, A. V., Foley, R. J. & Chornock, R. Evidence for spectropolarimetric diversity in type Ia supernovae. Astrophys. J. 632, 450–475 (2005).

  102. 102.

    Wang, L. et al. Premaximum spectropolarimetry of the type Ia SN 2004dt. Astrophys. J. 653, 490–502 (2006).

  103. 103.

    Patat, F. et al. VLT spectropolarimetry of the fast expanding type Ia SN 2006X. Astron. Astrophys. 508, 229–246 (2009).

  104. 104.

    Maeda, K. et al. An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae. Nature 466, 82–85 (2010).

  105. 105.

    Dong, S., Katz, B., Kushnir, D. & Prieto, J. L. Type Ia supernovae with bimodal explosions are common - possible smoking gun for direct collisions of white dwarfs. Mon. Not. R. Astron. Soc. 454, L61–L65 (2015).

  106. 106.

    Vallely, P. J. et al. Signatures of bimodality in nebular phase type Ia supernova spectra: Indications of white dwarf collision progenitors. Preprint at https://arxiv.org/abs/1902.00037 (2019).

  107. 107.

    van den Bergh, S. The frequency of SN Ia in galaxies of different Hubble type. Publ. Astron. Soc. Pac. 102, 1318–1320 (1990).

  108. 108.

    Mannucci, F. et al. The supernova rate per unit mass. Astron. Astrophys. 433, 807–814 (2005).

  109. 109.

    Sullivan, M. et al. Rates and properties of type Ia supernovae as a function of mass and star formation in their host galaxies. Astrophys. J. 648, 868–883 (2006).

  110. 110.

    Brown, J. S. et al. The relative specific Type Ia supernovae rate from three years of ASAS-SN. Mon. Not. R. Astron. Soc. 484, 3785–3796 (2019).

  111. 111.

    Smith, M. et al. The SDSS-II Supernova Survey: Parameterizing the type Ia supernova rate as a function of host galaxy properties. Astrophys. J. 755, 61 (2012).

  112. 112.

    Kistler, M. D., Stanek, K. Z., Kochanek, C. S., Prieto, J. L. & Thompson, T. A. The impact of metallicity on the rate of type Ia supernovae. Astrophys. J. 770, 88 (2013).

  113. 113.

    Graur, O., Bianco, F. B. & Modjaz, M. A unified explanation for the supernova rate-galaxy mass dependence based on supernovae detected in Sloan galaxy spectra. Mon. Not. R. Astron. Soc. 450, 905–925 (2015).

  114. 114.

    Maoz, D., Mannucci, F. & Nelemans, G. Observational clues to the progenitors of type Ia supernovae. Annu. Rev. Astron. Astrophys. 52, 107–170 (2014).

  115. 115.

    Graur, O. et al. Type-Ia supernova rates to redshift 2.4 from CLASH: The Cluster Lensing And Supernova Survey with Hubble. Astrophys. J. 783, 28 (2014).

  116. 116.

    Frohmaier, C. et al. The volumetric rate of normal type Ia supernovae in the local Universe discovered by the Palomar Transient. Factory. Mon. Not. R. Astron. Soc. 486, 2308–2320 (2019).

  117. 117.

    Branch, D., Romanishin, W. & Baron, E. Statistical connections between the properties of type Ia supernovae and the B-V colors of their parent galaxies, and the value of H0. Astrophys. J. 465, 73–78 (1996).

  118. 118.

    Hamuy, M. et al. A search for environmental effects on type Ia supernovae. Astron. J. 120, 1479–1486 (2000).

  119. 119.

    Johansson, J. et al. SN Ia host galaxy properties from Sloan Digital Sky Survey-II spectroscopy. Mon. Not. R. Astron. Soc. 435, 1680–1700 (2013).

  120. 120.

    Howell, D. A., Sullivan, M., Conley, A. & Carlberg, R. Predicted and observed evolution in the mean properties of type Ia supernovae with redshift. Astrophys. J. Lett. 667, L37–L40 (2007).

  121. 121.

    Shen, K. J., Toonen, S. & Graur, O. The evolution of the type Ia supernova luminosity function. Astrophys. J. Lett. 851, L50 (2017).

  122. 122.

    Kelly, P. L., Hicken, M., Burke, D. L., Mandel, K. S. & Kirshner, R. P. Hubble residuals of nearby type Ia supernovae are correlated with host galaxy masses. Astrophys. J. 715, 743–756 (2010).

  123. 123.

    Sullivan, M. et al. The dependence of Type Ia Supernovae luminosities on their host galaxies. Mon. Not. R. Astron. Soc. 406, 782–802 (2010).

  124. 124.

    Lampeitl, H. et al. The effect of host galaxies on type Ia supernovae in the SDSS-II Supernova Survey. Astrophys. J. 722, 566–576 (2010).

  125. 125.

    Childress, M. et al. Host galaxy properties and Hubble residuals of type Ia supernovae from the Nearby Supernova Factory. Astrophys. J. 770, 108 (2013).

  126. 126.

    Scolnic, D. M. et al. The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined Pantheon sample. Astrophys. J. 859, 101 (2018).

  127. 127.

    Brout, D. et al. First cosmology results using SNe Ia from the Dark Energy Survey: Analysis, systematic uncertainties, and validation. Astrophys. J. 874, 150 (2019).

  128. 128.

    Rigault, M. et al. Strong dependence of type Ia supernova standardization on the local specific star formation rate. Preprint at https://arxiv.org/abs/1806.03849 (2018).

  129. 129.

    Jones, D. O. et al. Should type Ia supernova distances be corrected for their local environments? Astrophys. J. 867, 108 (2018).

  130. 130.

    Rigault, M. et al. Evidence of environmental dependencies of Type Ia supernovae from the Nearby Supernova Factory indicated by local Hα. Astron. Astrophys. 560, A66 (2013).

  131. 131.

    Rose, B. M., Garnavich, P. M. & Berg, M. A. Think global, act local: The influence of environment age and host mass on type Ia supernova light curves. Astrophys. J. 874, 32 (2019).

  132. 132.

    Roman, M. et al. Dependence of Type Ia supernova luminosities on their local environment. Astron. Astrophys. 615, A68 (2018).

  133. 133.

    Kelly, P. L. et al. Distances with <4% precision from type Ia supernovae in young star-forming environments. Science 347, 1459–1462 (2015).

  134. 134.

    Childress, M. J., Wolf, C. & Zahid, H. J. Ages of Type Ia supernovae over cosmic time. Mon. Not. R. Astron. Soc. 445, 1898–1911 (2014).

  135. 135.

    Taubenberger, S. The extremes of thermonuclear supernovae. In Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 317–373 (Springer, 2017).

  136. 136.

    Silverman, J. M. et al. Berkeley Supernova Ia Program - I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae. Mon. Not. R. Astron. Soc. 425, 1789–1818 (2012).

  137. 137.

    Panther, F. H. et al. SN1991bg-like supernovae are associated with old stellar populations. Preprint at https://arxiv.org/abs/1904.10139 (2019).

  138. 138.

    Cartier, R. et al. Early observations of the nearby Type Ia supernova SN 2015F. Mon. Not. R. Astron. Soc. 464, 4476–4494 (2017).

  139. 139.

    Srivastav, S., Anupama, G. C., Sahu, D. K. & Ravikumar, C. D. SN 2015bp: adding to the growing population of transitional Type Ia supernovae. Mon. Not. R. Astron. Soc. 466, 2436–2449 (2017).

  140. 140.

    Garnavich, P. M. et al. The luminosity of SN 1999by in NGC 2841 and the nature of “peculiar” type Ia supernovae. Astrophys. J. 613, 1120–1132 (2004).

  141. 141.

    Foley, R. J. et al. Type Iax supernovae: A new class of stellar explosion. Astrophys. J. 767, 57 (2013).

  142. 142.

    Jha, S. W. Type Iax supernovae. In Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 375–401 (Springer, 2017).

  143. 143.

    Li, W. et al. SN 2002cx: The most peculiar known type Ia supernova. Publ. Astron. Soc. Pac. 115, 453–473 (2003).

  144. 144.

    Jha, S. et al. Late-time spectroscopy of SN 2002cx: The prototype of a new subclass of type Ia supernovae. Astron. J. 132, 189–196 (2006).

  145. 145.

    Stritzinger, M. D. et al. Comprehensive observations of the bright and energetic Type Iax SN 2012Z: Interpretation as a Chandrasekhar mass white dwarf explosion. Astron. Astrophys. 573, A2 (2015).

  146. 146.

    Tomasella, L. et al. Optical and near-infrared observations of SN 2014ck: an outlier among the Type Iax supernovae. Mon. Not. R. Astron. Soc. 459, 1018–1038 (2016).

  147. 147.

    McCully, C. et al. Hubble Space Telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A. Astrophys. J. 786, 134 (2014).

  148. 148.

    McCully, C. et al. A luminous, blue progenitor system for the type Iax supernova 2012Z. Nature 512, 54–56 (2014).

  149. 149.

    Kromer, M. et al. 3D deflagration simulations leaving bound remnants: a model for 2002cx-like Type Ia supernovae. Mon. Not. R. Astron. Soc. 429, 2287–2297 (2013).

  150. 150.

    Vennes, S. et al. An unusual white dwarf star may be a surviving remnant of a subluminous Type Ia supernova. Science 357, 680–683 (2017).

  151. 151.

    Raddi, R. et al. Partly burnt runaway stellar remnants from peculiar thermonuclear supernovae. Mon. Not. R. Astron. Soc. https://doi.org/10.1093/mnras/stz1618 (2019).

  152. 152.

    White, C. J. et al. Slow-speed supernovae from the Palomar Transient Factory: Two channels. Astrophys. J. 799, 52 (2015).

  153. 153.

    Cao, Y. et al. A strong ultraviolet pulse from a newborn type Ia supernova. Nature 521, 328–331 (2015).

  154. 154.

    Taubenberger, S. et al. [O i] λλ6300, 6364 in the nebular spectrum of a subluminous type Ia supernova. Astrophys. J. Lett. 775, L43 (2013).

  155. 155.

    Kromer, M. et al. The peculiar Type Ia supernova iPTF14atg: Chandrasekhar-mass explosion or violent merger? Mon. Not. R. Astron. Soc. 459, 4428–4439 (2016).

  156. 156.

    Howell, D. A. et al. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature 443, 308–311 (2006).

  157. 157.

    Taubenberger, S. et al. High luminosity, slow ejecta and persistent carbon lines: SN 2009dc challenges thermonuclear explosion scenarios. Mon. Not. R. Astron. Soc. 412, 2735–2762 (2011).

  158. 158.

    Taubenberger, S. et al. ‘Super-Chandrasekhar’ Type Ia Supernovae at nebular epochs. Mon. Not. R. Astron. Soc. 432, 3117–3130 (2013).

  159. 159.

    Scalzo, R. A. et al. Probing type Ia supernova properties using bolometric light curves from the Carnegie Supernova Project and the CfA Supernova Group. Mon. Not. R. Astron. Soc. 483, 628–647 (2019).

  160. 160.

    Chen, P. et al. ASASSN-15pz: Revealing significant photometric diversity among 2009dc-like, peculiar type Ia supernovae. Preprint at https://arxiv.org/abs/1904.03198 (2019).

  161. 161.

    Khan, R., Stanek, K. Z., Stoll, R. & Prieto, J. L. Super-Chandrasekhar SNe Ia strongly prefer metal-poor environments. Astrophys. J. Lett. 737, L24 (2011).

  162. 162.

    Perets, H. B. et al. The old environment of the faint calcium-rich supernova SN 2005cz. Astrophys. J. Lett. 728, L36 (2011).

  163. 163.

    Kasliwal, M. M. et al. Calcium-rich gap transients in the remote outskirts of galaxies. Astrophys. J. 755, 161 (2012).

  164. 164.

    Lyman, J. D. et al. Environment-derived constraints on the progenitors of low-luminosity Type I supernovae. Mon. Not. R. Astron. Soc. 434, 527–541 (2013).

  165. 165.

    Lunnan, R. et al. Two new calcium-rich gap transients in group and cluster environments. Astrophys. J. 836, 60 (2017).

  166. 166.

    Perets, H. B. et al. A faint type of supernova from a white dwarf with a helium-rich companion. Nature 465, 322–325 (2010).

  167. 167.

    Foley, R. J. Kinematics and host-galaxy properties suggest a nuclear origin for calcium-rich supernova progenitors. Mon. Not. R. Astron. Soc. 452, 2463–2478 (2015).

  168. 168.

    Milisavljevic, D. et al. iPTF15eqv: Multiwavelength exposé of a peculiar calcium-rich transient. Astrophys. J. 846, 50 (2017).

  169. 169.

    De, K. et al. iPTF 16hgs: A double-peaked Ca-rich gap transient in a metal-poor, star-forming dwarf galaxy. Astrophys. J. 866, 72 (2018).

  170. 170.

    Li, W. et al. The unique type Ia supernova 2000cx in NGC 524. Publ. Astron. Soc. Pac. 113, 1178–1204 (2001).

  171. 171.

    Candia, P. et al. Optical and infrared photometry of the unusual type Ia supernova 2000cx. Publ. Astron. Soc. Pac. 115, 277–294 (2003).

  172. 172.

    Silverman, J. M. et al. SN 2000cx and SN 2013bh: extremely rare, nearly twin Type Ia supernovae. Mon. Not. R. Astron. Soc. 436, 1225–1237 (2013).

  173. 173.

    Drout, M. R. et al. The fast and furious decay of the peculiar type Ic supernova 2005ek. Astrophys. J. 774, 58 (2013).

  174. 174.

    Sullivan, M. et al. The subluminous and peculiar type Ia supernova PTF 09dav. Astrophys. J. 732, 118 (2011).

  175. 175.

    Kasliwal, M. M. et al. Rapidly decaying supernova 2010X: A candidate “.Ia” explosion. Astrophys. J. Lett. 723, L98–L102 (2010).

  176. 176.

    Fesen, R. A., Weil, K. E., Hamilton, A. J. S. & Höflich, P. A. Optical and UV spectra of the remnant of SN 1885 (S And) in M31. Astrophys. J. 848, 130 (2017).

  177. 177.

    Maguire, K. et al. PTF10ops - a subluminous, normal-width light curve Type Ia supernova in the middle of nowhere. Mon. Not. R. Astron. Soc. 418, 747–758 (2011).

  178. 178.

    Perets, H. B., Badenes, C., Arcavi, I., Simon, J. D. & Gal-yam, A. An emerging class of bright, fast-evolving supernovae with low-mass ejecta. Astrophys. J. 730, 89 (2011).

  179. 179.

    Poznanski, D. et al. An unusually fast-evolving supernova. Science 327, 58–60 (2010).

  180. 180.

    Burke, J. et al. FLOYDS classification of AT 2019ein / ATLAS19ieo as a young and peculiar SN Ia. The Astronomer’s Telegram 12719 (2019).

  181. 181.

    Jiang, J.-A. et al. A hybrid type Ia supernova with an early flash triggered by helium-shell detonation. Nature 550, 80–83 (2017).

  182. 182.

    De, K. et al. ZTF 18aaqeasu (SN2018byg): A massive helium-shell double detonation on a sub-Chandrasekhar-mass white dwarf. Astrophys. J. 873, L18 (2019).

  183. 183.

    Miller, A. A. et al. Color me intrigued: The discovery of iPTF 16fnm, an SN 2002cx-like object. Astrophys. J. 848, 59 (2017).

  184. 184.

    Frohmaier, C., Sullivan, M., Maguire, K. & Nugent, P. The volumetric rate of calcium-rich transients in the local Universe. Astrophys. J. 858, 50 (2018).

  185. 185.

    Holoien, T. W.-S. et al. The ASAS-SN bright supernova catalogue - I. 2013–2014. Mon. Not. R. Astron. Soc. 464, 2672–2686 (2017).

  186. 186.

    Tonry, J. L. et al. ATLAS: A high-cadence all-sky survey system. Publ. Astron. Soc. Pac. 130, 064505 (2018).

  187. 187.

    Drake, A. J. et al. First results from the Catalina Real-Time Transient Survey. Astrophys. J. 696, 870–884 (2009).

  188. 188.

    Sand, D., Valenti, S., Tartaglia, L., Yang, S. & Wyatt, S. In Am. Astron. Soc. Meet. #231 245.11 (AAS, 2018).

  189. 189.

    Hodgkin, S. T., Wyrzykowski, L., Blagorodnova, N. & Koposov, S. Transient astronomy with the Gaia satellite. Philos. Trans. Royal Soc. A 371, 20120239 (2013).

  190. 190.

    Filippenko, A. V., Li, W. D., Treffers, R. R. & Modjaz, M. The Lick Observatory supernova search with the Katzman Automatic Imaging Telescope. In Astron. Soc. Pac. Conf. Ser. Vol. 246 (eds Paczynski, B., Chen, W.-P. & Lemme, C.) 121–130 (2001).

  191. 191.

    Walker, E. S. et al. First results from the La Silla-QUEST Supernova Survey and the Carnegie Supernova Project. Astrophys. J. Suppl. Ser. 219, 13 (2015).

  192. 192.

    Lipunov, V. et al. Master robotic net. Adv. Astron. 2010, 349171 (2010).

  193. 193.

    Wyrzykowski, Ł. et al. OGLE-IV real-time transient search. Acta Astron. 64, 197–232 (2014).

  194. 194.

    Huber, M. et al. The Pan-STARRS Survey for Transients (PSST) - first announcement and public release. The Astronomer’s Telegram 7153 (2015).

  195. 195.

    Law, N. M. et al. The Palomar Transient Factory: System overview, performance, and first results. Publ. Astron. Soc. Pac. 121, 1395 (2009).

  196. 196.

    Yang, Z. et al. PTSS: Discovery of a probable supernova in SDSS J150350.43+482250.7. The Astronomer’s Telegram 8757 (2016).

  197. 197.

    Bellm, E. C. et al. The Zwicky Transient Facility: System overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).

  198. 198.

    Ivezić, Ž. et al. LSST: From science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019).

  199. 199.

    Li, W. et al. Photometric and spectroscopic properties of type Ia supernova 2018oh with early excess emission from the Kepler 2 observations. Astrophys. J. 870, 12 (2019).

  200. 200.

    Hsiao, E. Y. et al. Carnegie Supernova Project-II: The near-infrared spectroscopy program. Publ. Astron. Soc. Pac. 131, 014002 (2019).

Download references

Acknowledgements

We thank C. Burns, R. Cartier, M. Graham, E. Hsiao, D. Jones, W. Li, M. Rigault, and S. Taubenberger for providing the figures used in this review. We are grateful to R. Foley, A. Gal-Yam, P. Nugent and K. Shen for comments and helpful suggestions. We also thank F. Panther for alerting us to the PhD thesis of T. Pankey Jr as the genesis of a radioactive nickel-56 power source for the luminosity of supernovae. Support for this review was provided in part by US National Science Foundation award AST-1615455 (S.W.J.), FP7 EU/European Research Council (ERC) grant 615929 (M.S.) and H2020/ERC grant 758638 (K.M).

Author information

S.W.J. wrote the introduction and the section ‘The thermonuclear supernova zoo’. K.M. wrote the section ‘Type-Ia supernovae’ and M.S. wrote the section ‘SNe Ia and their environments’. All of the authors discussed and edited the text.

Correspondence to Saurabh W. Jha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading