Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observational properties of thermonuclear supernovae

Abstract

The explosive death of a star as a supernova is one of the most dramatic events in the Universe. Supernovae have an outsized impact on many areas of astrophysics: they are major contributors to the chemical enrichment of the cosmos and significantly influence the formation of subsequent generations of stars and the evolution of galaxies. Here we review the observational properties of thermonuclear supernovae—exploding white dwarf stars resulting from the stellar evolution of low-mass stars in close binary systems. The best known objects in this class are type-Ia supernovae (SNe Ia), astrophysically important in their application as standardizable candles to measure cosmological distances and the primary source of iron group elements in the Universe. Surprisingly, given their prominent role, SN Ia progenitor systems and explosion mechanisms are not fully understood; the observations we describe here provide constraints on models, not always in consistent ways. Recent advances in supernova discovery and follow-up have shown that the class of thermonuclear supernovae includes more than just SNe Ia, and we characterize that diversity in this review.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Lightcurves of SNe Ia.
Fig. 2: Homogeneous optical spectra of SNe Ia.
Fig. 3: Lightcurve shape standardization of SNe Ia.
Fig. 4: Early-time SN Ia lightcurves.
Fig. 5: SN Ia nebular spectroscopy and line shifts.
Fig. 6: The effect of environment on SN Ia standardization.
Fig. 7: The thermonuclear supernova zoo.
Fig. 8: Optical and near-infrared spectroscopy of thermonuclear supernovae.

References

  1. 1.

    Minkowski, R. Spectra of supernovae. Publ. Astron. Soc. Pac. 53, 224–225 (1941).

    ADS  Google Scholar 

  2. 2.

    Filippenko, A. V. Optical spectra of supernovae. Annu. Rev. Astron. Astrophys. 35, 309–355 (1997).

    ADS  Google Scholar 

  3. 3.

    Gal-Yam, A. Observational and physical classification of supernovae. In Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 195–237 (Springer, 2017).

  4. 4.

    Bloom, J. S. et al. A compact degenerate primary-star progenitor of SN 2011fe. Astrophys. J. Lett. 744, L17 (2012).

    ADS  Google Scholar 

  5. 5.

    Churazov, E. et al. Cobalt-56 γ-ray emission lines from the type Ia supernova 2014J. Nature 512, 406–408 (2014).

    ADS  Google Scholar 

  6. 6.

    Piro, A. L. & Nakar, E. What can we learn from the rising light curves of radioactively powered supernovae? Astrophys. J. 769, 67 (2013).

    ADS  Google Scholar 

  7. 7.

    Diehl, R. et al. Early 56Ni decay gamma rays from SN2014J suggest an unusual explosion. Science 345, 1162–1165 (2014).

    ADS  Google Scholar 

  8. 8.

    Phillips, M. M. The absolute magnitudes of type Ia supernovae. Astrophys. J. Lett. 413, L105–L108 (1993).

    ADS  Google Scholar 

  9. 9.

    Riess, A. G. et al. Observational evidence from supernovae for an accelerating Universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

    ADS  Google Scholar 

  10. 10.

    Perlmutter, S. et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999).

    ADS  MATH  Google Scholar 

  11. 11.

    Riess, A. G. et al. A 2.4% determination of the local value of the Hubble constant. Astrophys. J. 826, 56 (2016).

    ADS  Google Scholar 

  12. 12.

    Nomoto, K., Kobayashi, C. & Tominaga, N. Nucleosynthesis in stars and the chemical enrichment of galaxies. Annu. Rev. Astron. Astrophys. 51, 457–509 (2013).

    ADS  Google Scholar 

  13. 13.

    Hillebrandt, W., Kromer, M., Röpke, F. K. & Ruiter, A. J. Towards an understanding of Type Ia supernovae from a synthesis of theory and observations. Front. Phys. 8, 116–143 (2013).

    Google Scholar 

  14. 14.

    Alsabti, A. W. & Murdin, P. (eds) Handbook of Supernovae (Springer, 2017).

  15. 15.

    Branch, D. & Wheeler, J. C. Supernova Explosions (Springer, 2017).

  16. 16.

    Modjaz, M., Gutiérrez, C. P. & Arcavi, I. New regimes in the observation of core-collapse supernovae. Nat. Astron. https://doi.org/10.1038/s41550-019-0856-2 (2019).

  17. 17.

    Inserra, C. Observational properties of extreme supernovae. Nat. Astron. https://doi.org/10.1038/s41550-019-0854-4 (2019).

  18. 18.

    Pankey, T. Jr Possible Thermonuclear Activities in Natural Terrestrial Minerals. PhD thesis, Howard Univ. (1962).

  19. 19.

    Colgate, S. A. & McKee, C. Early supernova luminosity. Astrophys. J. 157, 623–643 (1969).

    ADS  Google Scholar 

  20. 20.

    Arnett, W. D. Type I supernovae. I - Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982).

    ADS  Google Scholar 

  21. 21.

    Katz, B., Kushnir, D. & Dong, S. An exact integral relation between the Ni56 mass and the bolometric light curve of a type Ia supernova. Preprint at https://arxiv.org/abs/1301.6766 (2013).

  22. 22.

    Khatami, D. K. & Kasen, D. N. Physics of luminous transient light curves: A new relation between peak time and luminosity. Astrophys. J. 878, 56 (2019).

    ADS  Google Scholar 

  23. 23.

    Kasen, D. Secondary maximum in the near-infrared light curves of type Ia supernovae. Astrophys. J. 649, 939–953 (2006).

    ADS  Google Scholar 

  24. 24.

    Kromer, M. et al. Double-detonation sub-Chandrasekhar supernovae: Synthetic observables for minimum helium shell mass models. Astrophys. J. 719, 1067–1082 (2010).

    ADS  Google Scholar 

  25. 25.

    Nugent, P. E. et al. Supernova SN 2011fe from an exploding carbon-oxygen white dwarf star. Nature 480, 344–347 (2011).

    ADS  Google Scholar 

  26. 26.

    Nugent, P., Phillips, M., Baron, E., Branch, D. & Hauschildt, P. Evidence for a spectroscopic sequence among type 1a Supernovae. Astrophys. J. Lett. 455, L147–L150 (1995).

    ADS  Google Scholar 

  27. 27.

    Hachinger, S., Mazzali, P. A., Tanaka, M., Hillebrandt, W. & Benetti, S. Spectral luminosity indicators in Type Ia supernovae. Understanding the (SiII) line-strength ratio and beyond. Mon. Not. R. Astron. Soc. 389, 1087–1096 (2008).

    ADS  Google Scholar 

  28. 28.

    Silverman, J. M., Ganeshalingam, M. & Filippenko, A. V. Berkeley Supernova Ia Program - V. Late-time spectra of Type Ia supernovae. Mon. Not. R. Astron. Soc. 430, 1030–1041 (2013).

    ADS  Google Scholar 

  29. 29.

    Graham, M. L. et al. Nebular-phase spectra of nearby Type Ia Supernovae. Mon. Not. R. Astron. Soc. 472, 3437–3454 (2017).

    ADS  Google Scholar 

  30. 30.

    Taubenberger, S. et al. Spectroscopy of the Type Ia supernova 2011fe past 1000 d. Mon. Not. R. Astron. Soc. 448, L48–L52 (2015).

    ADS  Google Scholar 

  31. 31.

    Fransson, C. & Jerkstrand, A. Reconciling the infrared catastrophe and observations of SN 2011fe. Astrophys. J. Lett. 814, L2 (2015).

    ADS  Google Scholar 

  32. 32.

    Hamuy, M. et al. The absolute luminosities of the Calan/Tololo type Ia supernovae. Astron. J. 112, 2391–2397 (1996).

    ADS  Google Scholar 

  33. 33.

    Guy, J. et al. SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators. Astron. Astrophys. 466, 11–21 (2007).

    ADS  Google Scholar 

  34. 34.

    Jha, S., Riess, A. G. & Kirshner, R. P. Improved distances to type Ia supernovae with multicolor light-curve shapes: MLCS2k2. Astrophys. J. 659, 122–148 (2007).

    ADS  Google Scholar 

  35. 35.

    Burns, C. R. et al. The Carnegie Supernova Project: Light-curve fitting with SNooPy. Astron. J. 141, 19 (2011).

    ADS  Google Scholar 

  36. 36.

    Krisciunas, K., Phillips, M. M. & Suntzeff, N. B. Hubble diagrams of type Ia supernovae in the near-infrared. Astrophys. J. 602, L81–L84 (2004).

    ADS  Google Scholar 

  37. 37.

    Barone-Nugent, R. L. et al. Near-infrared observations of Type Ia supernovae: the best known standard candle for cosmology. Mon. Not. R. Astron. Soc. 425, 1007–1012 (2012).

    ADS  Google Scholar 

  38. 38.

    Dhawan, S., Jha, S. W. & Leibundgut, B. Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles. Astron. Astrophys. 609, A72 (2018).

    ADS  Google Scholar 

  39. 39.

    Burns, C. R. et al. The Carnegie Supernova Project: Absolute calibration and the Hubble constant. Astrophys. J. 869, 56 (2018).

    ADS  Google Scholar 

  40. 40.

    Burns, C. R. et al. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae. Astrophys. J. 789, 32 (2014).

    ADS  Google Scholar 

  41. 41.

    Li, W. et al. Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature 480, 348–350 (2011).

    ADS  Google Scholar 

  42. 42.

    Schaefer, B. E. & Pagnotta, A. An absence of ex-companion stars in the type Ia supernova remnant SNR 0509–67.5. Nature 481, 164–166 (2012).

    ADS  Google Scholar 

  43. 43.

    Kerzendorf, W. E. et al. A high-resolution spectroscopic search for the remaining donor for Tycho’s supernova. Astrophys. J. 774, 99 (2013).

    ADS  Google Scholar 

  44. 44.

    Kerzendorf, W. E. et al. A search for a surviving companion in SN 1006. Mon. Not. R. Astron. Soc. 479, 192–199 (2018).

    ADS  Google Scholar 

  45. 45.

    Ruiz-Lapuente, P. et al. No surviving companion in Kepler’s supernova. Astrophys. J. 862, 124 (2018).

    ADS  Google Scholar 

  46. 46.

    Shen, K. J. et al. Three hypervelocity white dwarfs in Gaia DR2: Evidence for dynamically driven double-degenerate double-detonation type Ia supernovae. Astrophys. J. 865, 15 (2018).

    ADS  Google Scholar 

  47. 47.

    Hosseinzadeh, G. et al. Early blue excess from the type Ia supernova 2017cbv and implications for its progenitor. Astrophys. J. Lett. 845, L11 (2017).

    ADS  Google Scholar 

  48. 48.

    Olling, R. P. et al. No signature of ejecta interaction with a stellar companion in three type Ia supernovae. Nature 521, 332–335 (2015).

    ADS  Google Scholar 

  49. 49.

    Dimitriadis, G. et al. K2 Observations of SN 2018oh reveal a two-component rising light curve for a type Ia supernova. Astrophys. J. 870, L1 (2019).

    ADS  Google Scholar 

  50. 50.

    Shappee, B. J. et al. Seeing double: ASASSN-18bt exhibits a two-component rise in the early-time K2 light curve. Astrophys. J. 870, 13 (2019).

    ADS  Google Scholar 

  51. 51.

    Fausnaugh, M. M. et al. Early time light curves of 18 bright type Ia supernovae observed with TESS. Preprint at https://arxiv.org/abs/1904.02171 (2019).

  52. 52.

    Piro, A. L. & Nakar, E. What can we learn from the rising light curves of radioactively powered supernovae? Astrophys. J. 769, 67 (2013).

    ADS  Google Scholar 

  53. 53.

    Maeda, K., Jiang, J.-a, Shigeyama, T. & Doi, M. Type Ia supernovae in the first few days: Signatures of helium detonation versus interaction. Astrophys. J. 861, 78 (2018).

    ADS  Google Scholar 

  54. 54.

    Magee, M. R., Sim, S. A., Kotak, R. & Kerzendorf, W. E. Modelling the early time behaviour of type Ia supernovae: effects of the 56Ni distribution. Astron. Astrophys. 614, A115 (2018).

    ADS  Google Scholar 

  55. 55.

    Stritzinger, M. D. et al. Red versus blue: Early observations of thermonuclear supernovae reveal two distinct populations? Astrophys. J. Lett. 864, L35 (2018).

    ADS  Google Scholar 

  56. 56.

    Polin, A., Nugent, P. & Kasen, D. Observational predictions for sub-Chandrasekhar mass explosions: Further evidence for multiple progenitor systems for type Ia supernovae. Astrophys. J. 873, 84 (2019).

    ADS  Google Scholar 

  57. 57.

    Hayden, B. T. et al. The rise and fall of type Ia supernova light curves in the SDSS-II supernova survey. Astrophys. J. 712, 350–366 (2010).

    ADS  Google Scholar 

  58. 58.

    Firth, R. E. et al. The rising light curves of Type Ia supernovae. Mon. Not. R. Astron. Soc. 446, 3895–3910 (2015).

    ADS  Google Scholar 

  59. 59.

    Chomiuk, L. et al. A deep search for prompt radio emission from thermonuclear supernovae with the very large array. Astrophys. J. 821, 119 (2016).

    ADS  Google Scholar 

  60. 60.

    Russell, B. R. & Immler, S. Swift X-ray upper limits on type Ia supernova environments. Astrophys. J. Lett. 748, L29 (2012).

    ADS  Google Scholar 

  61. 61.

    Horesh, A. et al. Early radio and X-ray observations of the youngest nearby type Ia supernova PTF 11kly (SN 2011fe). Astrophys. J. 746, 21 (2012).

    ADS  Google Scholar 

  62. 62.

    Margutti, R. et al. No X-rays from the very nearby type Ia SN 2014J: Constraints on its environment. Astrophys. J. 790, 52 (2014).

    ADS  Google Scholar 

  63. 63.

    Patat, F. et al. Detection of circumstellar material in a normal type Ia supernova. Science 317, 924–926 (2007).

    ADS  Google Scholar 

  64. 64.

    Ferretti, R. et al. Time-varying sodium absorption in the Type Ia supernova 2013gh. Astron. Astrophys. 592, A40 (2016).

    Google Scholar 

  65. 65.

    Sternberg, A. et al. Circumstellar material in type Ia supernovae via sodium absorption features. Science 333, 856–859 (2011).

    ADS  Google Scholar 

  66. 66.

    Maguire, K. et al. A statistical analysis of circumstellar material in Type Ia supernovae. Mon. Not. R. Astron. Soc. 436, 222–240 (2013).

    ADS  Google Scholar 

  67. 67.

    Phillips, M. M. et al. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption. Astrophys. J. 779, 38 (2013).

    ADS  Google Scholar 

  68. 68.

    Mazzali, P. A. et al. High-velocity features: A ubiquitous property of type Ia supernovae. Astrophys. J. 623, L37–L40 (2005).

    ADS  Google Scholar 

  69. 69.

    Zhao, X. et al. The silicon and calcium high-velocity features in type Ia supernovae from early to maximum phases. Astrophys. J. Suppl. Ser. 220, 20 (2015).

    ADS  Google Scholar 

  70. 70.

    Blondin, S., Dessart, L., Hillier, D. J. & Khokhlov, A. M. One-dimensional delayed-detonation models of Type Ia supernovae: confrontation to observations at bolometric maximum. Mon. Not. R. Astron. Soc. 429, 2127–2142 (2013).

    ADS  Google Scholar 

  71. 71.

    Hamuy, M. et al. An asymptotic-giant-branch star in the progenitor system of a type Ia supernova. Nature 424, 651–654 (2003).

    ADS  Google Scholar 

  72. 72.

    Dilday, B. et al. PTF 11kx: A type Ia supernova with a symbiotic nova progenitor. Science 337, 942–945 (2012).

    ADS  Google Scholar 

  73. 73.

    Silverman, J. M. et al. Type Ia supernovae strongly interacting with their circumstellar medium. Astrophys. J. Suppl. Ser. 207, 3 (2013).

    ADS  Google Scholar 

  74. 74.

    Graham, M. L. et al. Delayed circumstellar interaction for type Ia SN 2015cp revealed by an HST ultraviolet imaging survey. Astrophys. J. 871, 62 (2019).

    ADS  Google Scholar 

  75. 75.

    Mattila, S. et al. Early and late time VLT spectroscopy of SN 2001el - progenitor constraints for a type Ia supernova. Astron. Astrophys. 443, 649–662 (2005).

    ADS  Google Scholar 

  76. 76.

    Leonard, D. C. Constraining the type Ia supernova progenitor: The search for hydrogen in nebular spectra. Astrophys. J. 670, 1275–1282 (2007).

    ADS  Google Scholar 

  77. 77.

    Lundqvist, P. et al. Hydrogen and helium in the spectra of Type Ia supernovae. Mon. Not. R. Astron. Soc. 435, 329–345 (2013).

    ADS  Google Scholar 

  78. 78.

    Shappee, B. J., Stanek, K. Z., Pogge, R. W. & Garnavich, P. M. No stripped hydrogen in the nebular spectra of nearby type Ia supernova 2011fe. Astrophys. J. Lett. 762, L5 (2013).

    ADS  Google Scholar 

  79. 79.

    Lundqvist, P. et al. No trace of a single-degenerate companion in late spectra of supernovae 2011fe and 2014. J. Astron. Astrophys. 577, A39 (2015).

    Google Scholar 

  80. 80.

    Maguire, K. Type Ia supernovae. In Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 293–316 (Springer, 2017).

  81. 81.

    Shappee, B. J. et al. Strong evidence against a non-degenerate companion in SN 2012cg. Astrophys. J. 855, 6 (2018).

    ADS  Google Scholar 

  82. 82.

    Sand, D. J. et al. Nebular spectroscopy of the “blue bump” type Ia supernova 2017cbv. Astrophys. J. 863, 24 (2018).

    ADS  Google Scholar 

  83. 83.

    Tucker, M. A., Shappee, B. J. & Wisniewski, J. P. No stripped companion material in the nebular spectrum of the “two-component” type Ia supernova ASASSN-18bt. Astrophys. J. 872, L22 (2019).

    ADS  Google Scholar 

  84. 84.

    Sand, D. J. et al. Nebular Hα limits for fast declining SNe Ia. Astrophys. J. 877, L4 (2019).

    ADS  Google Scholar 

  85. 85.

    Kollmeier, J. A. et al. Hα emission in the nebular spectrum of the Type Ia supernova ASASSN-18tb. Mon. Not. R. Astron. Soc. 486, 3041–3046 (2019).

    ADS  Google Scholar 

  86. 86.

    Vallely, P. J. et al. ASASSN-18tb: a most unusual Type Ia supernova observed by TESS and SALT. Mon. Not. R. Astron. Soc. 487, 2372–2384 (2019).

    ADS  Google Scholar 

  87. 87.

    Parrent, J. T. et al. A study of carbon features in type Ia supernova spectra. Astrophys. J. 732, 30 (2011).

    ADS  Google Scholar 

  88. 88.

    Thomas, R. C. et al. Type Ia supernova carbon footprints. Astrophys. J. 743, 27 (2011).

    ADS  Google Scholar 

  89. 89.

    Blondin, S. et al. The spectroscopic diversity of type Ia supernovae. Astron. J. 143, 126 (2012).

    ADS  Google Scholar 

  90. 90.

    Folatelli, G. et al. Unburned material in the ejecta of type Ia supernovae. Astrophys. J. 745, 74 (2012).

    ADS  Google Scholar 

  91. 91.

    Silverman, J. M. & Filippenko, A. V. Berkeley Supernova Ia Program - IV. Carbon detection in early-time optical spectra of Type Ia supernovae. Mon. Not. R. Astron. Soc. 425, 1917–1933 (2012).

    ADS  Google Scholar 

  92. 92.

    Maguire, K. et al. Exploring the spectral diversity of low-redshift Type Ia supernovae using the Palomar Transient Factory. Mon. Not. R. Astron. Soc. 444, 3258–3274 (2014).

    ADS  Google Scholar 

  93. 93.

    Heringer, E., van Kerkwijk, M. H., Sim, S. A., Kerzendorf, W. E. & Graham, M. L. Spectral sequences of type Ia supernovae. II. Carbon as a diagnostic tool for explosion mechanisms. Astrophys. J. 871, 250 (2019).

    ADS  Google Scholar 

  94. 94.

    Zhao, X. et al. The oxygen features in type Ia supernovae and implications for the nature of thermonuclear explosions. Astrophys. J. 826, 211 (2016).

    ADS  Google Scholar 

  95. 95.

    Ashall, C. et al. Photometric and spectroscopic observations, and abundance tomography modelling of the Type Ia supernova SN 2014J located in M82. Mon. Not. R. Astron. Soc. 445, 4427–4437 (2014).

    ADS  Google Scholar 

  96. 96.

    Ma, H., Woosley, S. E., Malone, C. M., Almgren, A. & Bell, J. Carbon deflagration in type Ia supernova. I. Centrally ignited models. Astrophys. J. 771, 58 (2013).

    ADS  Google Scholar 

  97. 97.

    Brown, P. J., Baron, E., Milne, P., Roming, P. W. A. & Wang, L. Theoretical clues to the ultraviolet diversity of type Ia supernovae. Astrophys. J. 809, 37 (2015).

    ADS  Google Scholar 

  98. 98.

    Foley, R. J. et al. Ultraviolet diversity of Type Ia supernovae. Mon. Not. R. Astron. Soc. 461, 1308–1316 (2016).

    ADS  Google Scholar 

  99. 99.

    Maguire, K. et al. Using late-time optical and near-infrared spectra to constrain Type Ia supernova explosion properties. Mon. Not. R. Astron. Soc. 477, 3567–3582 (2018).

    ADS  Google Scholar 

  100. 100.

    Seitenzahl, I. R. & Townsley, D. M. Nucleosynthesis in thermonuclear supernovae. In Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 1955–1978 (Springer, 2017).

  101. 101.

    Leonard, D. C., Li, W., Filippenko, A. V., Foley, R. J. & Chornock, R. Evidence for spectropolarimetric diversity in type Ia supernovae. Astrophys. J. 632, 450–475 (2005).

    ADS  Google Scholar 

  102. 102.

    Wang, L. et al. Premaximum spectropolarimetry of the type Ia SN 2004dt. Astrophys. J. 653, 490–502 (2006).

    ADS  Google Scholar 

  103. 103.

    Patat, F. et al. VLT spectropolarimetry of the fast expanding type Ia SN 2006X. Astron. Astrophys. 508, 229–246 (2009).

    ADS  Google Scholar 

  104. 104.

    Maeda, K. et al. An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae. Nature 466, 82–85 (2010).

    ADS  Google Scholar 

  105. 105.

    Dong, S., Katz, B., Kushnir, D. & Prieto, J. L. Type Ia supernovae with bimodal explosions are common - possible smoking gun for direct collisions of white dwarfs. Mon. Not. R. Astron. Soc. 454, L61–L65 (2015).

    ADS  Google Scholar 

  106. 106.

    Vallely, P. J. et al. Signatures of bimodality in nebular phase type Ia supernova spectra: Indications of white dwarf collision progenitors. Preprint at https://arxiv.org/abs/1902.00037 (2019).

  107. 107.

    van den Bergh, S. The frequency of SN Ia in galaxies of different Hubble type. Publ. Astron. Soc. Pac. 102, 1318–1320 (1990).

    ADS  Google Scholar 

  108. 108.

    Mannucci, F. et al. The supernova rate per unit mass. Astron. Astrophys. 433, 807–814 (2005).

    ADS  Google Scholar 

  109. 109.

    Sullivan, M. et al. Rates and properties of type Ia supernovae as a function of mass and star formation in their host galaxies. Astrophys. J. 648, 868–883 (2006).

    ADS  Google Scholar 

  110. 110.

    Brown, J. S. et al. The relative specific Type Ia supernovae rate from three years of ASAS-SN. Mon. Not. R. Astron. Soc. 484, 3785–3796 (2019).

    ADS  Google Scholar 

  111. 111.

    Smith, M. et al. The SDSS-II Supernova Survey: Parameterizing the type Ia supernova rate as a function of host galaxy properties. Astrophys. J. 755, 61 (2012).

    ADS  Google Scholar 

  112. 112.

    Kistler, M. D., Stanek, K. Z., Kochanek, C. S., Prieto, J. L. & Thompson, T. A. The impact of metallicity on the rate of type Ia supernovae. Astrophys. J. 770, 88 (2013).

    ADS  Google Scholar 

  113. 113.

    Graur, O., Bianco, F. B. & Modjaz, M. A unified explanation for the supernova rate-galaxy mass dependence based on supernovae detected in Sloan galaxy spectra. Mon. Not. R. Astron. Soc. 450, 905–925 (2015).

    ADS  Google Scholar 

  114. 114.

    Maoz, D., Mannucci, F. & Nelemans, G. Observational clues to the progenitors of type Ia supernovae. Annu. Rev. Astron. Astrophys. 52, 107–170 (2014).

    ADS  Google Scholar 

  115. 115.

    Graur, O. et al. Type-Ia supernova rates to redshift 2.4 from CLASH: The Cluster Lensing And Supernova Survey with Hubble. Astrophys. J. 783, 28 (2014).

    ADS  Google Scholar 

  116. 116.

    Frohmaier, C. et al. The volumetric rate of normal type Ia supernovae in the local Universe discovered by the Palomar Transient. Factory. Mon. Not. R. Astron. Soc. 486, 2308–2320 (2019).

    ADS  Google Scholar 

  117. 117.

    Branch, D., Romanishin, W. & Baron, E. Statistical connections between the properties of type Ia supernovae and the B-V colors of their parent galaxies, and the value of H0. Astrophys. J. 465, 73–78 (1996).

    ADS  Google Scholar 

  118. 118.

    Hamuy, M. et al. A search for environmental effects on type Ia supernovae. Astron. J. 120, 1479–1486 (2000).

    ADS  Google Scholar 

  119. 119.

    Johansson, J. et al. SN Ia host galaxy properties from Sloan Digital Sky Survey-II spectroscopy. Mon. Not. R. Astron. Soc. 435, 1680–1700 (2013).

    ADS  Google Scholar 

  120. 120.

    Howell, D. A., Sullivan, M., Conley, A. & Carlberg, R. Predicted and observed evolution in the mean properties of type Ia supernovae with redshift. Astrophys. J. Lett. 667, L37–L40 (2007).

    ADS  Google Scholar 

  121. 121.

    Shen, K. J., Toonen, S. & Graur, O. The evolution of the type Ia supernova luminosity function. Astrophys. J. Lett. 851, L50 (2017).

    ADS  Google Scholar 

  122. 122.

    Kelly, P. L., Hicken, M., Burke, D. L., Mandel, K. S. & Kirshner, R. P. Hubble residuals of nearby type Ia supernovae are correlated with host galaxy masses. Astrophys. J. 715, 743–756 (2010).

    ADS  Google Scholar 

  123. 123.

    Sullivan, M. et al. The dependence of Type Ia Supernovae luminosities on their host galaxies. Mon. Not. R. Astron. Soc. 406, 782–802 (2010).

    ADS  Google Scholar 

  124. 124.

    Lampeitl, H. et al. The effect of host galaxies on type Ia supernovae in the SDSS-II Supernova Survey. Astrophys. J. 722, 566–576 (2010).

    ADS  Google Scholar 

  125. 125.

    Childress, M. et al. Host galaxy properties and Hubble residuals of type Ia supernovae from the Nearby Supernova Factory. Astrophys. J. 770, 108 (2013).

    ADS  Google Scholar 

  126. 126.

    Scolnic, D. M. et al. The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined Pantheon sample. Astrophys. J. 859, 101 (2018).

    ADS  Google Scholar 

  127. 127.

    Brout, D. et al. First cosmology results using SNe Ia from the Dark Energy Survey: Analysis, systematic uncertainties, and validation. Astrophys. J. 874, 150 (2019).

    ADS  Google Scholar 

  128. 128.

    Rigault, M. et al. Strong dependence of type Ia supernova standardization on the local specific star formation rate. Preprint at https://arxiv.org/abs/1806.03849 (2018).

  129. 129.

    Jones, D. O. et al. Should type Ia supernova distances be corrected for their local environments? Astrophys. J. 867, 108 (2018).

    ADS  Google Scholar 

  130. 130.

    Rigault, M. et al. Evidence of environmental dependencies of Type Ia supernovae from the Nearby Supernova Factory indicated by local Hα. Astron. Astrophys. 560, A66 (2013).

    Google Scholar 

  131. 131.

    Rose, B. M., Garnavich, P. M. & Berg, M. A. Think global, act local: The influence of environment age and host mass on type Ia supernova light curves. Astrophys. J. 874, 32 (2019).

    ADS  Google Scholar 

  132. 132.

    Roman, M. et al. Dependence of Type Ia supernova luminosities on their local environment. Astron. Astrophys. 615, A68 (2018).

    Google Scholar 

  133. 133.

    Kelly, P. L. et al. Distances with <4% precision from type Ia supernovae in young star-forming environments. Science 347, 1459–1462 (2015).

    ADS  Google Scholar 

  134. 134.

    Childress, M. J., Wolf, C. & Zahid, H. J. Ages of Type Ia supernovae over cosmic time. Mon. Not. R. Astron. Soc. 445, 1898–1911 (2014).

    ADS  Google Scholar 

  135. 135.

    Taubenberger, S. The extremes of thermonuclear supernovae. In Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 317–373 (Springer, 2017).

  136. 136.

    Silverman, J. M. et al. Berkeley Supernova Ia Program - I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae. Mon. Not. R. Astron. Soc. 425, 1789–1818 (2012).

    ADS  Google Scholar 

  137. 137.

    Panther, F. H. et al. SN1991bg-like supernovae are associated with old stellar populations. Preprint at https://arxiv.org/abs/1904.10139 (2019).

  138. 138.

    Cartier, R. et al. Early observations of the nearby Type Ia supernova SN 2015F. Mon. Not. R. Astron. Soc. 464, 4476–4494 (2017).

    ADS  Google Scholar 

  139. 139.

    Srivastav, S., Anupama, G. C., Sahu, D. K. & Ravikumar, C. D. SN 2015bp: adding to the growing population of transitional Type Ia supernovae. Mon. Not. R. Astron. Soc. 466, 2436–2449 (2017).

    ADS  Google Scholar 

  140. 140.

    Garnavich, P. M. et al. The luminosity of SN 1999by in NGC 2841 and the nature of “peculiar” type Ia supernovae. Astrophys. J. 613, 1120–1132 (2004).

    ADS  Google Scholar 

  141. 141.

    Foley, R. J. et al. Type Iax supernovae: A new class of stellar explosion. Astrophys. J. 767, 57 (2013).

    ADS  Google Scholar 

  142. 142.

    Jha, S. W. Type Iax supernovae. In Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 375–401 (Springer, 2017).

  143. 143.

    Li, W. et al. SN 2002cx: The most peculiar known type Ia supernova. Publ. Astron. Soc. Pac. 115, 453–473 (2003).

    ADS  Google Scholar 

  144. 144.

    Jha, S. et al. Late-time spectroscopy of SN 2002cx: The prototype of a new subclass of type Ia supernovae. Astron. J. 132, 189–196 (2006).

    ADS  Google Scholar 

  145. 145.

    Stritzinger, M. D. et al. Comprehensive observations of the bright and energetic Type Iax SN 2012Z: Interpretation as a Chandrasekhar mass white dwarf explosion. Astron. Astrophys. 573, A2 (2015).

    Google Scholar 

  146. 146.

    Tomasella, L. et al. Optical and near-infrared observations of SN 2014ck: an outlier among the Type Iax supernovae. Mon. Not. R. Astron. Soc. 459, 1018–1038 (2016).

    ADS  Google Scholar 

  147. 147.

    McCully, C. et al. Hubble Space Telescope and ground-based observations of the type Iax supernovae SN 2005hk and SN 2008A. Astrophys. J. 786, 134 (2014).

    ADS  Google Scholar 

  148. 148.

    McCully, C. et al. A luminous, blue progenitor system for the type Iax supernova 2012Z. Nature 512, 54–56 (2014).

    ADS  Google Scholar 

  149. 149.

    Kromer, M. et al. 3D deflagration simulations leaving bound remnants: a model for 2002cx-like Type Ia supernovae. Mon. Not. R. Astron. Soc. 429, 2287–2297 (2013).

    ADS  Google Scholar 

  150. 150.

    Vennes, S. et al. An unusual white dwarf star may be a surviving remnant of a subluminous Type Ia supernova. Science 357, 680–683 (2017).

    ADS  Google Scholar 

  151. 151.

    Raddi, R. et al. Partly burnt runaway stellar remnants from peculiar thermonuclear supernovae. Mon. Not. R. Astron. Soc. https://doi.org/10.1093/mnras/stz1618 (2019).

  152. 152.

    White, C. J. et al. Slow-speed supernovae from the Palomar Transient Factory: Two channels. Astrophys. J. 799, 52 (2015).

    ADS  Google Scholar 

  153. 153.

    Cao, Y. et al. A strong ultraviolet pulse from a newborn type Ia supernova. Nature 521, 328–331 (2015).

    ADS  Google Scholar 

  154. 154.

    Taubenberger, S. et al. [O i] λλ6300, 6364 in the nebular spectrum of a subluminous type Ia supernova. Astrophys. J. Lett. 775, L43 (2013).

    ADS  Google Scholar 

  155. 155.

    Kromer, M. et al. The peculiar Type Ia supernova iPTF14atg: Chandrasekhar-mass explosion or violent merger? Mon. Not. R. Astron. Soc. 459, 4428–4439 (2016).

    ADS  Google Scholar 

  156. 156.

    Howell, D. A. et al. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature 443, 308–311 (2006).

    ADS  Google Scholar 

  157. 157.

    Taubenberger, S. et al. High luminosity, slow ejecta and persistent carbon lines: SN 2009dc challenges thermonuclear explosion scenarios. Mon. Not. R. Astron. Soc. 412, 2735–2762 (2011).

    ADS  Google Scholar 

  158. 158.

    Taubenberger, S. et al. ‘Super-Chandrasekhar’ Type Ia Supernovae at nebular epochs. Mon. Not. R. Astron. Soc. 432, 3117–3130 (2013).

    ADS  Google Scholar 

  159. 159.

    Scalzo, R. A. et al. Probing type Ia supernova properties using bolometric light curves from the Carnegie Supernova Project and the CfA Supernova Group. Mon. Not. R. Astron. Soc. 483, 628–647 (2019).

    ADS  Google Scholar 

  160. 160.

    Chen, P. et al. ASASSN-15pz: Revealing significant photometric diversity among 2009dc-like, peculiar type Ia supernovae. Preprint at https://arxiv.org/abs/1904.03198 (2019).

  161. 161.

    Khan, R., Stanek, K. Z., Stoll, R. & Prieto, J. L. Super-Chandrasekhar SNe Ia strongly prefer metal-poor environments. Astrophys. J. Lett. 737, L24 (2011).

    ADS  Google Scholar 

  162. 162.

    Perets, H. B. et al. The old environment of the faint calcium-rich supernova SN 2005cz. Astrophys. J. Lett. 728, L36 (2011).

    ADS  Google Scholar 

  163. 163.

    Kasliwal, M. M. et al. Calcium-rich gap transients in the remote outskirts of galaxies. Astrophys. J. 755, 161 (2012).

    ADS  Google Scholar 

  164. 164.

    Lyman, J. D. et al. Environment-derived constraints on the progenitors of low-luminosity Type I supernovae. Mon. Not. R. Astron. Soc. 434, 527–541 (2013).

    ADS  Google Scholar 

  165. 165.

    Lunnan, R. et al. Two new calcium-rich gap transients in group and cluster environments. Astrophys. J. 836, 60 (2017).

    ADS  Google Scholar 

  166. 166.

    Perets, H. B. et al. A faint type of supernova from a white dwarf with a helium-rich companion. Nature 465, 322–325 (2010).

    ADS  Google Scholar 

  167. 167.

    Foley, R. J. Kinematics and host-galaxy properties suggest a nuclear origin for calcium-rich supernova progenitors. Mon. Not. R. Astron. Soc. 452, 2463–2478 (2015).

    ADS  Google Scholar 

  168. 168.

    Milisavljevic, D. et al. iPTF15eqv: Multiwavelength exposé of a peculiar calcium-rich transient. Astrophys. J. 846, 50 (2017).

    ADS  Google Scholar 

  169. 169.

    De, K. et al. iPTF 16hgs: A double-peaked Ca-rich gap transient in a metal-poor, star-forming dwarf galaxy. Astrophys. J. 866, 72 (2018).

    ADS  Google Scholar 

  170. 170.

    Li, W. et al. The unique type Ia supernova 2000cx in NGC 524. Publ. Astron. Soc. Pac. 113, 1178–1204 (2001).

    ADS  Google Scholar 

  171. 171.

    Candia, P. et al. Optical and infrared photometry of the unusual type Ia supernova 2000cx. Publ. Astron. Soc. Pac. 115, 277–294 (2003).

    ADS  Google Scholar 

  172. 172.

    Silverman, J. M. et al. SN 2000cx and SN 2013bh: extremely rare, nearly twin Type Ia supernovae. Mon. Not. R. Astron. Soc. 436, 1225–1237 (2013).

    ADS  Google Scholar 

  173. 173.

    Drout, M. R. et al. The fast and furious decay of the peculiar type Ic supernova 2005ek. Astrophys. J. 774, 58 (2013).

    ADS  Google Scholar 

  174. 174.

    Sullivan, M. et al. The subluminous and peculiar type Ia supernova PTF 09dav. Astrophys. J. 732, 118 (2011).

    ADS  Google Scholar 

  175. 175.

    Kasliwal, M. M. et al. Rapidly decaying supernova 2010X: A candidate “.Ia” explosion. Astrophys. J. Lett. 723, L98–L102 (2010).

    ADS  Google Scholar 

  176. 176.

    Fesen, R. A., Weil, K. E., Hamilton, A. J. S. & Höflich, P. A. Optical and UV spectra of the remnant of SN 1885 (S And) in M31. Astrophys. J. 848, 130 (2017).

    ADS  Google Scholar 

  177. 177.

    Maguire, K. et al. PTF10ops - a subluminous, normal-width light curve Type Ia supernova in the middle of nowhere. Mon. Not. R. Astron. Soc. 418, 747–758 (2011).

    ADS  Google Scholar 

  178. 178.

    Perets, H. B., Badenes, C., Arcavi, I., Simon, J. D. & Gal-yam, A. An emerging class of bright, fast-evolving supernovae with low-mass ejecta. Astrophys. J. 730, 89 (2011).

    ADS  Google Scholar 

  179. 179.

    Poznanski, D. et al. An unusually fast-evolving supernova. Science 327, 58–60 (2010).

    ADS  Google Scholar 

  180. 180.

    Burke, J. et al. FLOYDS classification of AT 2019ein / ATLAS19ieo as a young and peculiar SN Ia. The Astronomer’s Telegram 12719 (2019).

  181. 181.

    Jiang, J.-A. et al. A hybrid type Ia supernova with an early flash triggered by helium-shell detonation. Nature 550, 80–83 (2017).

    ADS  Google Scholar 

  182. 182.

    De, K. et al. ZTF 18aaqeasu (SN2018byg): A massive helium-shell double detonation on a sub-Chandrasekhar-mass white dwarf. Astrophys. J. 873, L18 (2019).

    ADS  Google Scholar 

  183. 183.

    Miller, A. A. et al. Color me intrigued: The discovery of iPTF 16fnm, an SN 2002cx-like object. Astrophys. J. 848, 59 (2017).

    ADS  Google Scholar 

  184. 184.

    Frohmaier, C., Sullivan, M., Maguire, K. & Nugent, P. The volumetric rate of calcium-rich transients in the local Universe. Astrophys. J. 858, 50 (2018).

    ADS  Google Scholar 

  185. 185.

    Holoien, T. W.-S. et al. The ASAS-SN bright supernova catalogue - I. 2013–2014. Mon. Not. R. Astron. Soc. 464, 2672–2686 (2017).

    ADS  Google Scholar 

  186. 186.

    Tonry, J. L. et al. ATLAS: A high-cadence all-sky survey system. Publ. Astron. Soc. Pac. 130, 064505 (2018).

    ADS  Google Scholar 

  187. 187.

    Drake, A. J. et al. First results from the Catalina Real-Time Transient Survey. Astrophys. J. 696, 870–884 (2009).

    ADS  Google Scholar 

  188. 188.

    Sand, D., Valenti, S., Tartaglia, L., Yang, S. & Wyatt, S. In Am. Astron. Soc. Meet. #231 245.11 (AAS, 2018).

  189. 189.

    Hodgkin, S. T., Wyrzykowski, L., Blagorodnova, N. & Koposov, S. Transient astronomy with the Gaia satellite. Philos. Trans. Royal Soc. A 371, 20120239 (2013).

    ADS  Google Scholar 

  190. 190.

    Filippenko, A. V., Li, W. D., Treffers, R. R. & Modjaz, M. The Lick Observatory supernova search with the Katzman Automatic Imaging Telescope. In Astron. Soc. Pac. Conf. Ser. Vol. 246 (eds Paczynski, B., Chen, W.-P. & Lemme, C.) 121–130 (2001).

  191. 191.

    Walker, E. S. et al. First results from the La Silla-QUEST Supernova Survey and the Carnegie Supernova Project. Astrophys. J. Suppl. Ser. 219, 13 (2015).

    ADS  Google Scholar 

  192. 192.

    Lipunov, V. et al. Master robotic net. Adv. Astron. 2010, 349171 (2010).

    ADS  Google Scholar 

  193. 193.

    Wyrzykowski, Ł. et al. OGLE-IV real-time transient search. Acta Astron. 64, 197–232 (2014).

    ADS  Google Scholar 

  194. 194.

    Huber, M. et al. The Pan-STARRS Survey for Transients (PSST) - first announcement and public release. The Astronomer’s Telegram 7153 (2015).

  195. 195.

    Law, N. M. et al. The Palomar Transient Factory: System overview, performance, and first results. Publ. Astron. Soc. Pac. 121, 1395 (2009).

    ADS  Google Scholar 

  196. 196.

    Yang, Z. et al. PTSS: Discovery of a probable supernova in SDSS J150350.43+482250.7. The Astronomer’s Telegram 8757 (2016).

  197. 197.

    Bellm, E. C. et al. The Zwicky Transient Facility: System overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).

    ADS  Google Scholar 

  198. 198.

    Ivezić, Ž. et al. LSST: From science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019).

    ADS  Google Scholar 

  199. 199.

    Li, W. et al. Photometric and spectroscopic properties of type Ia supernova 2018oh with early excess emission from the Kepler 2 observations. Astrophys. J. 870, 12 (2019).

    ADS  Google Scholar 

  200. 200.

    Hsiao, E. Y. et al. Carnegie Supernova Project-II: The near-infrared spectroscopy program. Publ. Astron. Soc. Pac. 131, 014002 (2019).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Burns, R. Cartier, M. Graham, E. Hsiao, D. Jones, W. Li, M. Rigault, and S. Taubenberger for providing the figures used in this review. We are grateful to R. Foley, A. Gal-Yam, P. Nugent and K. Shen for comments and helpful suggestions. We also thank F. Panther for alerting us to the PhD thesis of T. Pankey Jr as the genesis of a radioactive nickel-56 power source for the luminosity of supernovae. Support for this review was provided in part by US National Science Foundation award AST-1615455 (S.W.J.), FP7 EU/European Research Council (ERC) grant 615929 (M.S.) and H2020/ERC grant 758638 (K.M).

Author information

Affiliations

Authors

Contributions

S.W.J. wrote the introduction and the section ‘The thermonuclear supernova zoo’. K.M. wrote the section ‘Type-Ia supernovae’ and M.S. wrote the section ‘SNe Ia and their environments’. All of the authors discussed and edited the text.

Corresponding author

Correspondence to Saurabh W. Jha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jha, S.W., Maguire, K. & Sullivan, M. Observational properties of thermonuclear supernovae. Nat Astron 3, 706–716 (2019). https://doi.org/10.1038/s41550-019-0858-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing