Observational properties of extreme supernovae


The past ten years have opened up a new parameter space in time-domain astronomy with the discovery of transients defying our understanding of how stars explode. These extremes of the transient paradigm represent the brightest—called superluminous supernovae—and the fastest—known as fast blue optical transients—of the transient zoo. The number discovered and information gained per event have witnessed an exponential growth that has benefited observational and theoretical studies. The collected data and the understanding of such events have surpassed any initial expectation and opened up a future exploding with potential, spanning from novel tools of high-redshift cosmological investigation to new insights into the final stages of massive stars. Here, the observational properties of extreme supernovae are reviewed and put in the context of their physics, possible progenitor scenarios and explosion mechanisms.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The transient parameter space with peak luminosity as a function of the rise time.
Fig. 2: Prototypical lightcurve evolution of SLSNe I and II.
Fig. 3: Spectroscopic evolution of the three SLSN classes.
Fig. 4: Lightcurve evolution of known rapidly evolving transients (or FBOTs).
Fig. 5: Blue, featureless spectra of fast transients (FBOTs).


  1. 1.

    Janka, H.-T. Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci. 62, 407–451 (2012).

  2. 2.

    Hillebrandt, W. & Niemeyer, J. C. Type Ia supernova explosion models. Annu. Rev. Astron. Astrophys. 38, 191–230 (2000).

  3. 3.

    Arnett, W. D. Type I supernovae I – Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982).

  4. 4.

    Umeda, H. & Nomoto, K. Nucleosynthesis of zinc and iron peak elements in population III type II supernovae: comparison with abundances of very metal poor halo stars. Astrophys. J. 565, 385–404 (2002).

  5. 5.

    Childress, M. et al. Measuring nickel masses in Type Ia supernovae using cobalt emission in nebular phase spectra. Mon. Not. R. Astron. Soc. 454, 3816–3842 (2015).

  6. 6.

    Quimby, R. et al. Hydrogen-poor superluminous stellar explosions. Nature 474, 487–489 (2011).

  7. 7.

    Inserra, C. & Smartt, S. J. Superluminous supernovae as standardizable candles and high-redshift distance probes. Astrophys. J. 796, 87 (2014).

  8. 8.

    Drout, M. et al. Rapidly evolving and luminous transients from Pan-STARRS1. Astrophys. J. 794, 23 (2014).

  9. 9.

    Pursiainen, M. et al. Rapidly evolving transients in the Dark Energy Survey. Mon. Not. R. Astron. Soc. 481, 894–917 (2018).

  10. 10.

    Gal-Yam, A. The most luminous supernovae. Preprint at https://arxiv.org/abs/1812.01428 (2018).

  11. 11.

    Lunnan, R. et al. Hydrogen-poor superluminous supernovae and long-duration gamma-ray bursts have similar host galaxies. Astrophys. J. 787, 138 (2014).

  12. 12.

    Leloudas, G. et al. Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. Mon. Not. R. Astron. Soc. 449, 917–932 (2015).

  13. 13.

    Perley, D. et al. Host-galaxy properties of 32 low-redshift superluminous supernovae from the Palomar Transient Factory. Astrophys. J. 830, 13 (2016).

  14. 14.

    Chen, T.-W. et al. Superluminous supernova progenitors have a half-solar metallicity threshold. Mon. Not. R. Astron. Soc. 470, 3566–3573 (2017).

  15. 15.

    Schulze, S. et al. Cosmic evolution and metal aversion in superluminous supernova host galaxies. Mon. Not. R. Astron. Soc. 473, 1258–1285 (2018).

  16. 16.

    Hatsukade, B. et al. Obscured star formation in the host galaxies of superluminous supernovae. Astrophys. J. 857, 72 (2018).

  17. 17.

    Gal-Yam, A. Luminous supernovae. Science 337, 927 (2012).

  18. 18.

    Smith, N. et al. SN 2006gy: discovery of the most luminous supernova ever recorded, powered by the death of an extremely massive star like η Carinae. Astrophys. J. 666, 1116–1128 (2007).

  19. 19.

    Gezari, S. et al. Discovery of the ultra-bright type II-L supernova 2008es. Astrophys. J. 690, 1313–1321 (2009).

  20. 20.

    Miller, A. et al. The exceptionally luminous type II-linear supernova 2008es. Astrophys. J. 690, 1303–1312 (2009).

  21. 21.

    Inserra, C. et al. On the nature of hydrogen-rich superluminous supernovae. Mon. Not. R. Astron. Soc. 475, 1046–1072 (2018).

  22. 22.

    Inserra, C. et al. Super-luminous type Ic supernovae: catching a magnetar by the tail. Astrophys. J. 770, 128 (2013).

  23. 23.

    Prajs, S. et al. The volumetric rate of superluminous supernovae at z ~ 1. Mon. Not. R. Astron. Soc. 464, 3568–3579 (2017).

  24. 24.

    Quimby, R. et al. Rates of superluminous supernovae at z ~ 0.2. Mon. Not. R. Astron. Soc. 431, 912–922 (2013).

  25. 25.

    McCrum, M. et al. Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 Medium Deep Survey. Mon. Not. R. Astron. Soc. 448, 1206–1231 (2015).

  26. 26.

    Cooke, J. et al. Superluminous supernovae at redshifts of 2.05 and 3.90. Nature 491, 228–231 (2012).

  27. 27.

    Pastorello, A. et al. Ultra-bright optical transients are linked with type Ic supernovae. Astrophys. J. 724, L16–L21 (2010).

  28. 28.

    Angus, C. R. et al. A Hubble Space Telescope survey of the host galaxies of superluminous supernovae. Mon. Not. R. Astron. Soc. 458, 84–104 (2016).

  29. 29.

    Kasen, D. & Bildsten, L. Supernova light curves powered by young magnetars. Astrophys. J. 717, 245–249 (2010).

  30. 30.

    Woosley, S. Bright supernovae from magnetar birth. Astrophys. J. 719, L204–L207 (2010).

  31. 31.

    Dessart, L. et al. Superluminous supernovae: 56Ni power versus magnetar radiation. Mon. Not. R. Astron. Soc. 426, L76–L80 (2012).

  32. 32.

    Chevalier, R. A. & Irwin, C. M. Shock breakout in dense mass loss: luminous supernovae. Astrophys. J. 729, L6 (2011).

  33. 33.

    Chatzopoulos, E. et al. Analytical light curve models of superluminous supernovae: χ2 minimization of parameter fits. Astrophys. J. 773, 76 (2013).

  34. 34.

    Gal-Yam, A. et al. Supernova 2007bi as a pair-instability explosion. Nature 462, 624–627 (2009).

  35. 35.

    Kozyreva, A. et al. Fast evolving pair-instability supernova models: evolution, explosion, light curves. Mon. Not. R. Astron. Soc. 464, 2854–2865 (2017).

  36. 36.

    Woosley, S. E., Blinnikov, S. & Heger, A. Pulsational pair instability as an explanation for the most luminous supernovae. Nature 450, 390–392 (2007).

  37. 37.

    Sorokina, E., Blinnikov, S., Nomoto, K., Quimby, R. & Tolstov, A. Type I superluminous supernovae as explosions inside non-hydrogen circumstellar envelopes. Astrophys. J. 829, 17 (2016).

  38. 38.

    Tolstov, A. et al. Pulsational pair-instability model for superluminous supernova PTF12dam: interaction and radioactive decay. Astrophys. J. 835, 266 (2017).

  39. 39.

    Woosley, S. E. Pulsational pair-instability supernovae. Astrophys. J. 836, 244 (2017).

  40. 40.

    Anderson, J. P. et al. A nearby super-luminous supernova with a long pre-maximum “plateau” and strong C II features. Astron. Astrophys. 620, A67 (2018).

  41. 41.

    Smith, M. et al. Studying the ultraviolet spectrum of the first spectroscopically confirmed supernova at redshift two. Astrophys. J. 854, 37 (2018).

  42. 42.

    De Cia, A. et al. Light curves of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. Astrophys. J. 860, 100 (2018).

  43. 43.

    Lunnan, R. et al. Hydrogen-poor superluminous supernovae from the Pan-STARRS1 Medium Deep Survey. Astrophys. J. 852, 81 (2018).

  44. 44.

    Angus, C. R. et al. Superluminous supernovae from the Dark Energy Survey. Preprint at https://arxiv.org/abs/1812.04071 (2018).

  45. 45.

    Soderberg, A. et al. An extremely luminous X-ray outburst at the birth of a supernova. Nature 453, 469–474 (2008).

  46. 46.

    Mazzali, P. et al. Spectrum formation in superluminous supernovae (Type I). Mon. Not. R. Astron. Soc. 458, 3455–3465 (2016).

  47. 47.

    Nicholl, M. et al. On the diversity of superluminous supernovae: ejected mass as the dominant factor. Mon. Not. R. Astron. Soc. 452, 3869–3893 (2015).

  48. 48.

    Inserra, C. et al. A statistical approach to identify superluminous supernovae and probe their diversity. Astrophys. J. 854, 175 (2018).

  49. 49.

    Quimby, R. et al. Spectra of hydrogen-poor superluminous supernovae from the Palomar Transient Factory. Astrophys. J. 855, 2 (2018).

  50. 50.

    Liu, J.-Q., Modjaz, M. & Bianco, F. Analyzing the largest spectroscopic data set of hydrogen-poor super-luminous supernovae. Astrophys. J. 845, 85 (2017).

  51. 51.

    Inserra, C. et al. Euclid: Superluminous supernovae in the Deep Survey. Astron. Astrophys. 609, A83 (2018).

  52. 52.

    Inserra, C. et al. Complexity in the light curves and spectra of slow-evolving superluminous supernovae. Mon. Not. R. Astron. Soc. 468, 4642–4662 (2017).

  53. 53.

    Nicholl, M. et al. SN 2015BN: A detailed multi-wavelength view of a nearby superluminous supernova. Astrophys. J. 826, 39 (2016).

  54. 54.

    Nicholl, M. et al. One thousand days of SN2015bn: HST imaging shows a light curve flattening consistent with magnetar predictions. Astrophys. J. 866, L24 (2018).

  55. 55.

    Vreeswijk, P. et al. On the early-time excess emission in hydrogen-poor superluminous supernovae. Astrophys. J. 835, 58 (2017).

  56. 56.

    Lunnan, R. et al. PS1–14bj: A hydrogen-poor superluminous supernova with a long rise and slow decay. Astrophys. J. 831, 144 (2016).

  57. 57.

    Leloudas, G. et al. SN 2006oz: rise of a super-luminous supernova observed by the SDSS-II SN Survey. Astron. Astrophys. 541, A129 (2012).

  58. 58.

    Smith, M. et al. DES14X3taz: A type I superluminous supernova showing a luminous, rapidly cooling initial pre-peak bump. Astrophys. J. 818, L8 (2016).

  59. 59.

    Nicholl, M. et al. LSQ14bdq: A type Ic super-luminous supernova with a double-peaked light curve. Astrophys. J. 807, L18 (2015).

  60. 60.

    Nicholl, M. & Smartt, S. J. Seeing double: the frequency and detectability of double-peaked superluminous supernova light curves. Mon. Not. R. Astron. Soc. 457, L79–L83 (2016).

  61. 61.

    Nicholl, M. et al. Superluminous supernovae from PESSTO. Mon. Not. R. Astron. Soc. 444, 2096–2113 (2014).

  62. 62.

    Blanchard, P. K. et al. The type I superluminous supernova PS16aqv: lightcurve complexity and deep limits on radioactive ejecta in a fast event. Astrophys. J. 865, 9 (2018).

  63. 63.

    Chen, T.-W. et al. The host galaxy and late-time evolution of the superluminous supernova PTF12dam. Mon. Not. R. Astron. Soc. 452, 1567–1586 (2015).

  64. 64.

    Kangas, T. et al. Gaia16apd — a link between fast and slowly declining type I superluminous supernovae. Mon. Not. R. Astron. Soc. 469, 1246–1258 (2017).

  65. 65.

    Moriya, T., Sorokina, E. & Chevalier, R. A. Superluminous supernovae. Space Sci. Rev. 214, 59 (2018).

  66. 66.

    Chomiuk, L. et al. Pan-STARRS1 discovery of two ultraluminous supernovae at z ~ 0.9. Astrophys. J. 743, 114 (2011).

  67. 67.

    Berger, E. et al. Ultraluminous supernovae as a new probe of the interstellar medium in distant galaxies. Astrophys. J. 755, L29 (2012).

  68. 68.

    Howell, D. A. et al. Two Superluminous supernovae from the early Universe discovered by the Supernova Legacy Survey. Astrophys. J. 779, 98 (2013).

  69. 69.

    Vreeswijk, P. et al. The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission. Astrophys. J. 797, 24 (2014).

  70. 70.

    Yan, L. et al. Far-ultraviolet to near-infrared spectroscopy of a nearby hydrogen-poor superluminous supernova Gaia16apd. Astrophys. J. 840, 57 (2017).

  71. 71.

    Pan, Y.-C. et al. DES15E2mlf: a spectroscopically confirmed superluminous supernova that exploded 3.5 Gyr after the big bang. Mon. Not. R. Astron. Soc. 470, 4241–4250 (2017).

  72. 72.

    Modjaz, M. et al. The spectral SN-GRB connection: systematic spectral comparisons between type Ic supernovae and broad-lined type Ic supernovae with and without gamma-ray bursts. Astrophys. J. 832, 108 (2016).

  73. 73.

    Yan, L. et al. Detection of broad Hα emission lines in the late-time spectra of a hydrogen-poor superluminous supernova. Astrophys. J. 814, 108 (2015).

  74. 74.

    Yan, L. et al. Hydrogen-poor superluminous supernovae with late-time Hα emission: three events from the Intermediate Palomar Transient Factory. Astrophys. J. 848, 6 (2017).

  75. 75.

    Modjaz, M., Gutiérrez, C. P. & Arcavi, I. New regimes in the observation of core-collapse supernovae. Nat. Astron. https://doi.org/10.1038/s41550-019-0856-2 (2019).

  76. 76.

    Chugai, N. N., Chevalier, R. A. & Utrobin, V. P. Optical signatures of circumstellar interaction in type IIP supernovae. Astrophys. J. 662, 1136–1147 (2007).

  77. 77.

    Gutiérrez, C. P. et al. Type II supernova spectral diversity. I. Observations, sample characterization, and spectral line evolution. Astrophys. J. 850, 89 (2017).

  78. 78.

    Nicholl, M. et al. Nebular-phase spectra of superluminous supernovae: physical insights from observational and statistical properties. Astrophys. J. 871, 102 (2019).

  79. 79.

    Jerkstrand, A. et al. Long-duration superluminous supernovae at late times. Astrophys. J. 835, 13 (2017).

  80. 80.

    Levan, A. et al. Superluminous X-rays from a superluminous supernova. Astrophys. J. 771, 136 (2013).

  81. 81.

    Margutti, R. et al. Results from a systematic survey of X-ray emission from hydrogen-poor superluminous SNe. Astrophys. J. 864, 45 (2018).

  82. 82.

    Bhirombhakdi, K. et al. Where is the engine hiding its missing energy? Constraints from a deep X-ray non-detection of the superluminous SN 2015bn. Astrophys. J. 868, L32 (2018).

  83. 83.

    Chen, T.-W. et al. The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system. Astron. Astrophys. 602, A9 (2017).

  84. 84.

    Bose, S. et al. Gaia17biu/SN 2017egm in NGC 3191: The closest hydrogen-poor superluminous supernova to date is in a normal, massive, metal-rich spiral galaxy. Astrophys. J. 853, 57 (2018).

  85. 85.

    Coppejans, D. L. et al. Jets in hydrogen-poor superluminous supernovae: Constraints from a comprehensive analysis of radio observations. Astrophys. J. 856, 56 (2018).

  86. 86.

    Eftekhari, T. et al. A radio source coincident with the superluminous supernova PTF10hgi: Evidence for a central engine and an analog of the repeating FRB 121102? Astrophys. J. 876, L10 (2019).

  87. 87.

    Inserra, C., Bulla, M., Sim, S. A. & Smartt, S. J. Spectropolarimetry of superluminous supernovae: Insight into their geometry. Astrophys. J. 831, 79 (2016).

  88. 88.

    Leloudas, G. et al. Time-resolved polarimetry of the superluminous SN 2015bn with the Nordic Optical Telescope. Astrophys. J. 837, L14 (2017).

  89. 89.

    Leloudas, G. et al. Polarimetry of the superluminous supernova LSQ14mo: No evidence for significant deviations from spherical symmetry. Astrophys. J. 815, L10 (2015).

  90. 90.

    Lunnan, R. et al. A UV resonance line echo from a shell around a hydrogen-poor superluminous supernova. Nat. Astron. 2, 887–895 (2018).

  91. 91.

    Tanaka, M. et al. Rapidly rising transients from the Subaru Hyper Suprime-Cam Transient Survey. Astrophys. J. 819, 5 (2016).

  92. 92.

    Kasliwal, M. et al. Rapidly decaying supernova 2010X: A candidate “.Ia” explosion. Astrophys. J. 723, L98–L102 (2010).

  93. 93.

    Drout, M. et al. The fast and furious decay of the peculiar type Ic supernova 2005ek. Astrophys. J. 774, 58 (2013).

  94. 94.

    Moriya, T. et al. Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars. Mon. Not. R. Astron. Soc. 466, 2085 (2017).

  95. 95.

    Perets, H. et al. A faint type of supernova from a white dwarf with a helium-rich companion. Nature 465, 322–325 (2010).

  96. 96.

    Shen, K. et al. Thermonuclear .Ia supernovae from helium shell detonations: Explosion models and observables. Astrophys. J. 715, 767–774 (2010).

  97. 97.

    Inserra, C. et al. OGLE-2013-SN-079: A lonely supernova consistent with a helium shell detonation. Astrophys. J. 799, L2 (2015).

  98. 98.

    Pastorello, A. et al. Massive stars exploding in a He-rich circumstellar medium — IX. SN 2014av, and characterization of type Ibn SNe. Mon. Not. R. Astron. Soc. 456, 853–869 (2016).

  99. 99.

    Hosseinzadeh, G. et al. Type Ibn supernovae show photometric homogeneity and spectral diversity at maximum light. Astrophys. J. 836, 158 (2017).

  100. 100.

    Jha, S. W., Maguire, K. & Sullivan, M. Observational properties of thermonuclear supernovae. Nat. Astron. https://doi.org/10.1038/s41550-019-0858-0 (2019).

  101. 101.

    Prentice, S. et al. The Cow: discovery of a luminous, hot, and rapidly evolving transient. Astrophys. J. 865, L3 (2018).

  102. 102.

    Perley, D. et al. The fast, luminous ultraviolet transient AT2018cow: extreme supernova, or disruption of a star by an intermediate-mass black hole? Mon. Not. R. Astron. Soc. 484, 1031–1049 (2019).

  103. 103.

    Margutti, R. et al. An embedded X-ray source shines through the aspherical AT2018cow: Revealing the inner workings of the most luminous fast-evolving optical transients. Astrophys. J. 872, 18 (2019).

  104. 104.

    Kuin, N. P. M. et al. Swift spectra of AT2018cow: A white dwarf tidal disruption event? Mon. Not. R. Astron. Soc. 487, 2505–2521 (2019).

  105. 105.

    Fox, O. & Smith, N. Signatures of circumstellar interaction in the unusual transient AT2018cow. Preprint at https://arxiv.org/abs/1903.01535 (2019).

  106. 106.

    Arcavi, I. et al. Rapidly rising transients in the supernova–superluminous supernova gap. Astrophys. J. 819, 35 (2016).

  107. 107.

    Rest, A. et al. A fast-evolving luminous transient discovered by K2/Kepler. Nat. Astron. 2, 307–311 (2018).

  108. 108.

    Vinko, J. et al. A luminous, fast rising UV-transient discovered by ROTSE: A tidal disruption event? Astrophys. J. 798, 12 (2015).

  109. 109.

    Ho, A. Y. Q. et al. The death throes of a stripped massive star: An eruptive mass-loss history encoded in pre-explosion emission, a rapidly rising luminous transient, and a broad-lined Ic supernova SN2018gep. Preprint at https://arxiv.org/abs/1904.11009 (2019).

  110. 110.

    Chen, P. et al. The most rapidly-declining type I supernova 2019bkc/ATLAS19dqr. Preprint at https://arxiv.org/abs/1905.02205 (2019).

  111. 111.

    Smith, N. et al. Coronal lines and dust formation in SN 2005ip: Not the brightest, but the hottest type IIn supernova. Astrophys. J. 695, 1334–1350 (2009).

  112. 112.

    Smith, N. et al. SN 2011hw: helium-rich circumstellar gas and the luminous blue variable to Wolf-Rayet transition in supernova progenitors. Mon. Not. R. Astron. Soc. 426, 1905–1915 (2012).

  113. 113.

    Pastorello, A. et al. Massive stars exploding in a He-rich circumstellar medium — IV. Transitional type Ibn supernovae. Mon. Not. R. Astron. Soc. 449, 1921–1940 (2015).

  114. 114.

    Rivera Sandoval, L. E. et al. X-ray Swift observations of SN 2018cow. Mon. Not. R. Astron. Soc. 480, L146–L150 (2018).

  115. 115.

    Poznanski, D. et al. An unusually fast-evolving supernova. Science 327, 58 (2010).

Download references


The author thanks D. Perley, S. Prentice and M. Pursiainen for sharing their dataset on fast blue optical transients.

Author information

Correspondence to C. Inserra.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information: Nature Astronomy thanks Giorgos Leloudas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading