The brightening of the pulsar wind nebula of PSR B0540−69 after its spin-down-rate transition

Abstract

It is believed that an isolated pulsar loses its rotational energy mainly through a relativistic wind consisting of electrons, positrons and possibly Poynting flux1,2,3. As it expands, this wind may eventually be terminated by a shock, where particles can be accelerated to energies of X-ray synchrotron emission, and a pulsar wind nebula (PWN) is usually detectable surrounding a young energetic pulsar1,2,3. However, the nature and/or energetics of these physical processes remain very uncertain, largely because they typically cannot be studied in a time-resolved fashion. Here we show that the X-ray PWN around the young pulsar PSR B0540−69 brightens gradually up to 32 ± 8% over the mean previous flux, after a sudden change in the spin-down rate of ~36% in December 2011. This spin-down-rate transition has very different properties from a traditional pulsar glitch4. No evidence is seen for any change in the pulsed X-ray emission. We conclude that the spin-down-rate transition results from a sudden change in the pulsar magnetosphere that increases the pulsar wind power and hence the PWN X-ray emission. The X-ray light curve of the PWN suggests a mean lifetime of the particles of 397 ± 374 d, corresponding to a magnetic field strength of \(0.78_{-0.28}^{+4.50}\ {\mathrm{mG}}\) in the PWN.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The unfolded X-ray spectra of PSR B054069 and its wind nebula (PSR + PWN) observed by XMM-Newton, Swift/XRT and NuSTAR.
Fig. 2: The luminosity evolution of PSR B054069 and its wind nebula (PSR + PWN).

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request. All the observational data used in this study are public and can be downloaded from the archives of these X-ray satellites.

References

  1. 1.

    Pacini, F. & Salvati, M. On the evolution of supernova remnants. Evolution of the magnetic field, particles, content, and luminosity. Astrophys. J. 186, 249–266 (1973).

    ADS  Article  Google Scholar 

  2. 2.

    Rees, M. J. & Gunn, J. E. The origin of the magnetic field and relativistic particles in the Crab nebula. Mon. Not. R. Astron. Soc. 167, 1–12 (1974).

    ADS  Article  Google Scholar 

  3. 3.

    Kennel, C. F. & Coroniti, F. V. Magnetohydrodynamic model of Crab nebula radiation. Astrophys. J. 283, 710–730 (1984).

    ADS  Article  Google Scholar 

  4. 4.

    Marshall, F. E., Guillemot, L., Harding, A. K., Martin, P. & Smith, D. A. Discovery of a spin-down state change in the LMC pulsar B0540−69. Astrophys. J. Lett. 807, L27 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Seward, F. D., Harnden, F. R. Jr. & Helfand, D. J. Discovery of a 50 millisecond pulsar in the large magellanic cloud. Astrophys. J. Lett. 287, L19–L22 (1984).

    ADS  Article  Google Scholar 

  6. 6.

    Gotthelf, E. V. & Wang, Q. D. A spatially resolved plerionic X-ray nebula around PSR B0540−69. Astrophys. J. Lett. 532, L117–L120 (2000).

    ADS  Article  Google Scholar 

  7. 7.

    Petre, R., Hwang, U., Holt, S. S., Safi-Harb, S. & Williams, R. M. The X-ray structure and spectrum of the pulsar wind nebula surrounding PSR B0540−69.3. Astrophys. J. 662, 988–997 (2007).

    ADS  Article  Google Scholar 

  8. 8.

    Zhang, W., Marshall, F. E., Gotthelf, E. V., Middleditch, J. & Wang, Q. D. A phase-connected braking index measurement for the Large Magellanic Cloud pulsar PSR B0540−69. Astrophys. J. Lett. 554, L177–L180 (2001).

    ADS  Article  Google Scholar 

  9. 9.

    Ge, M. Y. et al. X-ray phase-resolved spectroscopy of PSRs B0531+21, B1509−58, and B0540−69 with RXTE. Astrophys. J. Suppl. 199, 32 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    Ferdman, R. D., Archibald, R. F. & Kaspi, V. M. Long-term timing and emission behavior of the young Crab-like pulsar PSR B0540−69. Astrophys. J. Lett. 812, L95 (2015).

    ADS  Article  Google Scholar 

  11. 11.

    Marshall, F. E., Guillemot, L., Harding, A. K., Martin, P. & Smith, D. A. A new, low braking index for the LMC pulsar B0540−69. Astrophys. J. Lett. 827, L39 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Alpar, M. A., Anderson, P. W. & Shaham, J. Vortex creep and the internal temperature of neutron stars. I—General theory. Astrophys. J. 276, 325–334 (1984).

    ADS  Article  Google Scholar 

  13. 13.

    Espinoza, C. M., Lyne, A. G., Stappers, B. W. & Kramer, M. A study of 315 glitches in the rotation of 102 pulsars. Mon. Not. R. Astron. Soc. 414, 1679–1704 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    Kargaltsev, O., Cerutti, B., Lyubarsky, Y. & Striani, E. Pulsar-wind nebulae. Recent progress in observations and theory. Space Sci. Rev. 191, 391–439 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Bucciantini, N., Arons, J. & Amato, E. Modelling spectral evolution of pulsar wind nebulae inside supernova remnants. Mon. Not. R. Astron. Soc. 410, 381–398 (2011).

    ADS  Article  Google Scholar 

  16. 16.

    Wang, L. J., Dai, Z. G., Liu, L. D. & Wu, X. F. Probing the birth of post-merger millisecond magnetars with X-ray and gamma-ray emission. Astrophys. J. 823, 15 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Tavani, M. et al. Discovery of powerful gamma-ray flares from the Crab nebula. Science 331, 736–739 (2011).

    ADS  Article  Google Scholar 

  18. 18.

    Abdo, A. A. et al. Gamma-ray flares from the Crab nebula. Science 331, 739–742 (2011).

    ADS  Article  Google Scholar 

  19. 19.

    Reynolds, S. P., Borkowski, K. J. & Gwynne, P. H. Expansion and brightness changes in the pulsar-wind nebula in the composite supernova remnant Kes 75. Astrophys. J. 856, 133 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    Pavlov, G. G., Teter, M. A., Kargaltsev, O. & Sanwal, D. The variable jet of the vela pulsar. Astrophys. J. 591, 1157–1171 (2003).

    ADS  Article  Google Scholar 

  21. 21.

    Lyne, A., Hobbs, G., Kramer, M., Stairs, I. & Stappers, B. Switched magnetospheric regulation of pulsar spin-down. Science 329, 408–412 (2010).

    ADS  Article  Google Scholar 

  22. 22.

    Kramer, M., Lyne, A. G., O’Brien, J. T., Jordan, C. A. & Lorimer, D. R. A periodically-active pulsar giving insight into magnetospheric physics. Science 314, 97 (2006).

    ADS  Article  Google Scholar 

  23. 23.

    Allafort, A. et al. PSR J2021+4026 in the gamma Cygni region: the first variable γ-ray pulsar seen by the Fermi LAT. Astrophys. J. Lett. 777, L2 (2013).

    ADS  Article  Google Scholar 

  24. 24.

    Goldreich, P. & Julian, W. H. Pulsar electrodynamics. Astrophys. J. 157, 869–880 (1969).

    ADS  Article  Google Scholar 

  25. 25.

    Ruderman, M. A. & Sutherland, P. G. Theory of pulsars—polar caps, sparks, and coherent microwave radiation. Astrophys. J. 196, 51–72 (1975).

    ADS  Article  Google Scholar 

  26. 26.

    Arons, J. & Scharlemann, E. T. Pair formation above pulsar polar caps—structure of the low altitude acceleration zone. Astrophys. J. 231, 854–879 (1979).

    ADS  Article  Google Scholar 

  27. 27.

    Cheng, K. S., Ho, C. & Ruderman, M. Energetic radiation from rapidly spinning pulsars. I—Outer magnetosphere gaps. Astrophys. J. 300, 500–539 (1986).

    ADS  Article  Google Scholar 

  28. 28.

    Kou, F. F., Ou, Z. W. & Tong, H. On the variable timing behavior of PSR B0540−69: an almost excellent example to study the pulsar braking mechanism. Res. Astron. Astrophys. 16, 79 (2016).

    ADS  Article  Google Scholar 

  29. 29.

    Ekşi, K. Y. On the new braking index of PSR B0540−69: further support for magnetic field growth of neutron stars following submergence by fallback accretion. Mon. Not. R. Astron. Soc. 469, 1974–1978 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Bucciantini, N., Thompson, T. A., Arons, J., Quataert, E. & Del Zanna, L. Relativistic magnetohydrodynamics winds from rotating neutron stars. Mon. Not. R. Astron. Soc. 368, 1717–1734 (2006).

    ADS  Article  Google Scholar 

  31. 31.

    Mignani, R. P. et al. HST/WFPC2 observations of the LMC pulsar PSR B0540−69. Astron. Astrophys. 515, A110 (2010).

    Article  Google Scholar 

  32. 32.

    Jahoda, K. et al. Calibration of the rossi X-ray timing explorer proportional counter array. Astrophys. J. Suppl. 163, 401–423 (2006).

    ADS  Article  Google Scholar 

  33. 33.

    Jansen, F. et al. XMM-Newton Observatory. I. The spacecraft and operations. Astron. Astrophys. 365, L1–L6 (2001).

    ADS  Article  Google Scholar 

  34. 34.

    Harrison, F. A. et al. The Nuclear Spectroscopic Telescope Array (NuSTAR) high-energy X-ray mission. Astrophys. J. 770, 103 (2013).

    ADS  Article  Google Scholar 

  35. 35.

    Gehrels, N. et al. The Swift gamma-ray burst mission. Astrophys. J. 611, 1005–1020 (2004).

    ADS  Article  Google Scholar 

  36. 36.

    Campana, R. et al. X-ray observations of the Large Magellanic Cloud pulsar PSR B0540−69 and its pulsar wind nebula. Mon. Not. R. Astron. Soc. 389, 691–700 (2008).

    ADS  Article  Google Scholar 

  37. 37.

    Hobbs, G. B., Edwards, R. T. & Manchester, R. N. TEMPO2, a new pulsar-timing package—I. An overview. Mon. Not. R. Astron. Soc. 369, 655–672 (2006).

    ADS  Article  Google Scholar 

  38. 38.

    Mignani, R. P. et al. The first ultraviolet detection of the Large Magellanic Cloud pulsar PSR B0540−69. Astrophys. J. 871, 246 (2019).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

K. S. Cheng of Hongkong University, L. Zhang of Yunnan University, R. X. Xu of Peking University and H. Tong of Guangzhou University are appreciated for helpful discussions on the emission mechanism of pulsars. This work is supported by the National Key R&D Program of China (2016YFA0400800) and the National Natural Science Foundation of China under grants 11503027, 11673013, 11653004, U1838201, U1838201, 11673023 and U1838104. We thank the data support from the XMM-Newton, NuSTAR, RXTE and Swift teams.

Author information

Affiliations

Authors

Contributions

M.Y.G., L.L.Y., S.S.W., Z.J.L. and W.Z. were involved in the data analysis. F.J.L., M.Y.G., L.J.W., S.N.Z. and Q.D.W. contributed to the theoretical discussions. The manuscript was produced by M.Y.G., F.J.L., L.J.W., Q.D.W., S.N.Z. and S.S.W.

Corresponding authors

Correspondence to M. Y. Ge or F. J. Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Astronomy thanks C.-Y. Ng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Tables 1–3, text and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ge, M.Y., Lu, F.J., Yan, L.L. et al. The brightening of the pulsar wind nebula of PSR B0540−69 after its spin-down-rate transition. Nat Astron 3, 1122–1127 (2019). https://doi.org/10.1038/s41550-019-0853-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing