Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Kinematic detection of a planet carving a gap in a protoplanetary disk

Abstract

We still do not understand how planets form or why extrasolar planetary systems are so different from our own Solar System. However, the past few years have dramatically changed our view of the disks of gas and dust around young stars. Observations with the Atacama Large Millimeter/submillimeter Array and extreme adaptive-optics systems have revealed that most—if not all—disks contain substructure, including rings and gaps1,2,3, spirals4,5,6, azimuthal dust concentrations7 and shadows cast by misaligned inner disks5,8. These features have been interpreted as signatures of newborn protoplanets, but the exact origin is unknown. Here we report the kinematic detection of a few-Jupiter-mass planet located in a gas and dust gap at 130 au in the disk surrounding the young star HD 97048. An embedded planet can explain both the disturbed Keplerian flow of the gas, detected in CO lines, and the gap detected in the dust disk at the same radius. While gaps appear to be a common feature in protoplanetary disks2,3, we present a direct correspondence between a planet and a dust gap, indicating that at least some gaps are the result of planet–disk interactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: ALMA observations of the dust and gas disk surrounding HD 97048.
Fig. 2: Schematic view of the disk as seen by ALMA in a single channel.
Fig. 3: Hydrodynamical model of a 2 MJ planet interacting with the disc of HD 97048.
Fig. 4: Predicted emission for various planet masses.

Data availability

Raw data is publicly available via the ALMA archive under project ID 2016.1.00826.S. Final reduced and calibrated data cubes are available at https://doi.org/10.6084/m9.figshare.8266988.

Code availability

Phantom is publicly available at https://bitbucket.org/danielprice/phantom. mcfost is currently available under request and will be made open-source soon. Figures were generated with splash46 (http://users.monash.edu.au/~dprice/splash/) and pymcfost (https://github.com/cpinte/pymcfost), which are both open source.

References

  1. 1.

    ALMA Partnership et al. The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. Astrophys. J. Lett. 808, L3 (2015).

    ADS  Google Scholar 

  2. 2.

    Long, F. et al. Gaps and rings in an ALMA survey of disks in the Taurus star-forming region. Astrophys. J. 869, 17 (2018).

    ADS  Google Scholar 

  3. 3.

    Huang, J. et al. The disk substructures at high angular resolution project (DSHARP). II. Characteristics of annular substructures. Astrophys. J. Lett. 869, L42 (2018).

    ADS  Google Scholar 

  4. 4.

    Benisty, M. et al. Asymmetric features in the protoplanetary disk MWC 758. Astron. Astrophys. 578, L6 (2015).

    ADS  Google Scholar 

  5. 5.

    Stolker, T. et al. Shadows cast on the transition disk of HD 135344B. Multiwavelength VLT/SPHERE polarimetric differential imaging. Astron. Astrophys. 595, A113 (2016).

    Google Scholar 

  6. 6.

    Huang, J. et al. The disk substructures at high angular resolution project (DSHARP). III. Spiral structures in the millimeter continuum of the Elias 27, IM Lup, and WaOph 6 disks. Astrophys. J. Lett. 869, L43 (2018).

    ADS  Google Scholar 

  7. 7.

    van der Marel, N. et al. A major asymmetric dust trap in a transition disk. Science 340, 1199–1202 (2013).

    ADS  Google Scholar 

  8. 8.

    Marino, S., Perez, S. & Casassus, S. Shadows cast by a warp in the HD 142527 protoplanetary disk. Astrophys. J. Lett. 798, L44 (2015).

    ADS  Google Scholar 

  9. 9.

    Takahashi, S. Z. & Inutsuka, S.-i Two-component secular gravitational instability in a protoplanetary disk: a possible mechanism for creating ring-like structures. Astrophys. J. 794, 55 (2014).

    ADS  Google Scholar 

  10. 10.

    Gonzalez, J.-F., Laibe, G., Maddison, S. T., Pinte, C. & Ménard, F. ALMA images of discs: are all gaps carved by planets? Mon. Not. R. Astron. Soc. 454, L36–L40 (2015).

    ADS  Google Scholar 

  11. 11.

    Lorén-Aguilar, P. & Bate, M. R. Toroidal vortices and the conglomeration of dust into rings in protoplanetary discs. Mon. Not. R. Astron. Soc. 453, L78–L82 (2015).

    ADS  Google Scholar 

  12. 12.

    Zhang, K., Blake, G. A. & Bergin, E. A. Evidence of fast pebble growth near condensation fronts in the HL Tau protoplanetary disk. Astrophys. J. Lett. 806, L7 (2015).

    ADS  Google Scholar 

  13. 13.

    Béthune, W., Lesur, G. & Ferreira, J. Self-organisation in protoplanetary discs. Global, non-stratified Hall-MHD simulations. Astron. Astrophys. 589, A87 (2016).

    ADS  Google Scholar 

  14. 14.

    Dipierro, G. et al. On planet formation in HL Tau. Mon. Not. R. Astron. Soc. 453, L73–L77 (2015).

    ADS  Google Scholar 

  15. 15.

    Zhang, S. et al. The disk substructures at high angular resolution project (DSHARP). VII. The planet–disk interactions interpretation. Astrophys. J. Lett. 869, L47 (2018).

    ADS  Google Scholar 

  16. 16.

    Rameau, J. et al. An optical/near-infrared investigation of HD 100546 b with the Gemini Planet Imager and MagAO. Astron. J. 153, 244 (2017).

    ADS  Google Scholar 

  17. 17.

    Ligi, R. et al. Investigation of the inner structures around HD 169142 with VLT/SPHERE. Mon. Not. R. Astron. Soc. 473, 1774–1783 (2018).

    ADS  Google Scholar 

  18. 18.

    Currie, T. et al. No clear, direct evidence for multiple protoplanets orbiting LkCa 15: LkCa 15 bcd are likely inner disk signals. Preprint at https://arxiv.org/abs/1905.04322 (2019).

  19. 19.

    Keppler, M. et al. Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70. Astron. Astrophys. 617, A44 (2018).

    Google Scholar 

  20. 20.

    Müller, A. et al. Orbital and atmospheric characterization of the planet within the gap of the PDS 70 transition disk. Astron. Astrophys. 617, L2 (2018).

    ADS  Google Scholar 

  21. 21.

    Christiaens, V. et al. Separating extended disc features from the protoplanet in PDS 70 using VLT/SINFONI. Mon. Not. R. Astron. Soc. 486, 5819–5837 (2019).

    ADS  Google Scholar 

  22. 22.

    Haffert, S. Y. et al. Two accreting protoplanets around the young star PDS 70. Nat. Astron. https://doi.org/10.1038/s41550-019-0780-5(2019).

  23. 23.

    Perez, S. et al. Planet formation signposts: observability of circumplanetary disks via gas kinematics. Astrophys. J. Lett. 811, L5 (2015).

    ADS  Google Scholar 

  24. 24.

    Pinte, C. et al. Kinematic evidence for an embedded protoplanet in a circumstellar disk. Astrophys. J. Lett. 860, L13 (2018).

    ADS  Google Scholar 

  25. 25.

    Teague, R., Bae, J., Bergin, E. A., Birnstiel, T. & Foreman-Mackey, D. A kinematical detection of two embedded Jupiter-mass planets in HD 163296. Astrophys. J. Lett. 860, L12 (2018).

    ADS  Google Scholar 

  26. 26.

    Pinte, C. et al. Direct mapping of the temperature and velocity gradients in discs. Imaging the vertical CO snow line around IM Lupi. Astron. Astrophys. 609, A47 (2018).

    Google Scholar 

  27. 27.

    Dong, R., Liu, S.-Y. & Fung, J. Observational signatures of planets in protoplanetary disks: planet-induced line broadening in gaps. Astrophys. J. 870, 72 (2019).

    ADS  Google Scholar 

  28. 28.

    Ginski, C. et al. Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE. Astron. Astrophys. 595, A112 (2016).

    Google Scholar 

  29. 29.

    Dong, R. & Fung, J. What is the mass of a gap-opening planet? Astrophys. J. 835, 146 (2017).

    ADS  Google Scholar 

  30. 30.

    Rosotti, G. P., Juhasz, A., Booth, R. A. & Clarke, C. J. The minimum mass of detectable planets in protoplanetary discs and the derivation of planetary masses from high-resolution observations. Mon. Not. R. Astron. Soc. 459, 2790–2805 (2016).

    ADS  Google Scholar 

  31. 31.

    Kataoka, A. et al. Submillimeter polarization observation of the protoplanetary disk around HD 142527. Astrophys. J. Lett. 831, L12 (2016).

    ADS  Google Scholar 

  32. 32.

    Dent, W. R. F. et al. Submillimetre dust polarization and opacity in the HD163296 protoplanetary ring system. Mon. Not. R. Astron. Soc. 482, L29–L33 (2019).

    ADS  Google Scholar 

  33. 33.

    Gaia Collaboration et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Google Scholar 

  34. 34.

    Lagage, P.-O. et al. Anatomy of a flaring proto-planetary disk around a young intermediate-mass star. Science 314, 621–623 (2006).

    ADS  Google Scholar 

  35. 35.

    van der Plas, G. et al. Cavity and other radial substructures in the disk around HD 97048. Astron. Astrophys. 597, A32 (2017).

    Google Scholar 

  36. 36.

    Price, D. J. et al. Phantom: a smoothed particle hydrodynamics and magnetohydrodynamics code for astrophysics. Publ. Astron. Soc. Aust. 35, e031 (2018).

    ADS  Google Scholar 

  37. 37.

    Hutchison, M., Price, D. J. & Laibe, G. MULTIGRAIN: a smoothed particle hydrodynamic algorithm for multiple small dust grains and gas. Mon. Not. R. Astron. Soc. 476, 2186–2198 (2018).

    ADS  Google Scholar 

  38. 38.

    Ballabio, G. et al. Enforcing dust mass conservation in 3D simulations of tightly coupled grains with the PHANTOM SPH code. Mon. Not. R. Astron. Soc. 477, 2766–2771 (2018).

    ADS  Google Scholar 

  39. 39.

    Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  40. 40.

    Lodato, G. & Price, D. J. On the diffusive propagation of warps in thin accretion discs. Mon. Not. R. Astron. Soc. 405, 1212–1226 (2010).

    ADS  Google Scholar 

  41. 41.

    Bate, M. R., Bonnell, I. A. & Price, N. M. Modelling accretion in protobinary systems. Mon. Not. R. Astron. Soc. 277, 362–376 (1995).

    ADS  Google Scholar 

  42. 42.

    Pinte, C., Ménard, F., Duchêne, G. & Bastien, P. Monte Carlo radiative transfer in protoplanetary disks. Astron. Astrophys. 459, 797–804 (2006).

    ADS  Google Scholar 

  43. 43.

    Pinte, C. et al. Benchmark problems for continuum radiative transfer. High optical depths, anisotropic scattering, and polarisation. Astron. Astrophys. 498, 967–980 (2009).

    ADS  Google Scholar 

  44. 44.

    Woitke, P. Consistent dust and gas models for protoplanetary disks III. Models for selected objects from the FP7 DIANA project. Publ. Astron. Soc. Pac. 131, 064301 (2019).

    ADS  Google Scholar 

  45. 45.

    Woitke, P. et al. Consistent dust and gas models for protoplanetary disks. I. Disk shape, dust settling, opacities, and PAHs. Astron. Astrophys. 586, A103 (2016).

    Google Scholar 

  46. 46.

    Price, D. J. splash: an interactive visualisation tool for smoothed particle hydrodynamics simulations. Publ. Astron. Soc. Aust. 24, 159–173 (2007).

    ADS  Google Scholar 

Download references

Acknowledgements

C.P., D.J.P. and V.C. acknowledge funding from the Australian Research Council via FT170100040 and DP180104235. F.M., G.v.d.P. and C.P. acknowledge funding from ANR of France (ANR-16-CE31-0013). This work was performed on the OzSTAR national facility at Swinburne University of Technology. OzSTAR is funded by Swinburne and the Australian Government’s Education Investment Fund. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2016.1.00826.S. ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Author information

Affiliations

Authors

Contributions

C.P. analysed the data, carried out the modelling and wrote the manuscript. G.v.d.P. wrote the observing proposal and reduced the data. D.J.P. provided advice on running the smoothed particle hydrodynamics simulations and made some of the figures. All co-authors provided input on the manuscript.

Corresponding author

Correspondence to C. Pinte.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Astronomy thanks Richard Teague and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pinte, C., van der Plas, G., Ménard, F. et al. Kinematic detection of a planet carving a gap in a protoplanetary disk. Nat Astron 3, 1109–1114 (2019). https://doi.org/10.1038/s41550-019-0852-6

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing