Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A super-Earth and two sub-Neptunes transiting the nearby and quiet M dwarf TOI-270

A Publisher Correction to this article was published on 15 August 2019

This article has been updated


One of the primary goals of exoplanetary science is to detect small, temperate planets passing (transiting) in front of bright and quiet host stars. This enables the characterization of planetary sizes, orbits, bulk compositions, atmospheres and formation histories. These studies are facilitated by small and cool M dwarf host stars. Here we report the Transiting Exoplanet Survey Satellite (TESS)1 discovery of three small planets transiting one of the nearest and brightest M dwarf hosts observed to date, TOI-270 (TIC 259377017, with K-magnitude 8.3, and 22.5 parsecs away from Earth). The M3V-type star is transited by the super-Earth-sized planet TOI-270 b (\({1.247}_{ - 0.083}^{ + 0.089}\) R) and the sub-Neptune-sized planets TOI-270 c (2.42 ± 0.13 R) and TOI-270 d (2.13 ± 0.12 R). The planets orbit close to a mean-motion resonant chain, with periods (3.36 days, 5.66 days and 11.38 days, respectively) near ratios of small integers (5:3 and 2:1). TOI-270 is a prime target for future studies because (1) its near-resonance allows the detection of transit timing variations, enabling precise mass measurements and dynamical studies; (2) its brightness enables independent radial-velocity mass measurements; (3) the outer planets are ideal for atmospheric characterization via transmission spectroscopy; and (4) the quietness of the star enables future searches for habitable zone planets. Altogether, very few systems with small, temperate exoplanets are as suitable for such complementary and detailed characterization as TOI-270.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The discovery data and orbits of the super-Earth and two sub-Neptunes transiting TOI-270.
Fig. 2: TOI-270 in the context of known exoplanets.
Fig. 3: Expected and apparent TTVs of the TOI-270 system.

Data availability

The TESS data analysed during the current study are available in the Mikulski Archive for Space Telescopes (MAST; The VLT NAOS-CONICA data analysed during the current study are available in the European Southern Observatory archive ( All other datasets analysed and/or generated during the current study are available from M.N.G. on reasonable request.

Code availability

The following code used during the current study is publicly available (access information given in the respective references): python88, numpy89, scipy90, matplotlib91, tqdm (, seaborn (, allesfitter75, ellc76, aflare77, dynesty78, corner92, TESS Transit Finder, a customized version of the Tapir software package93, AstroImageJ94, ttvfast7 and REBOUND95. Any customized scripts built on these codes are available from M.N.G. on reasonable request.

Change history

  • 15 August 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Ricker, G. R. et al. Transiting Exoplanet Survey Satellite (TESS). Proc. SPIE 9143, 20 (2014).

    Google Scholar 

  2. 2.

    Fulton, B. J. & Petigura, E. A. The California-Kepler survey. VII. Precise planet radii leveraging Gaia DR2 reveal the stellar mass dependence of the planet radius gap. Astron. J. 156, 264 (2018).

    ADS  Google Scholar 

  3. 3.

    Van Eylen, V. et al. An asteroseismic view of the radius valley: stripped cores, not born rocky. Mon. Not. R. Astron. Soc. 479, 4786–4795 (2018).

    ADS  Google Scholar 

  4. 4.

    Owen, J. E. & Wu, Y. Kepler planets: a tale of evaporation. Astrophys. J. 775, 105 (2013).

    ADS  Google Scholar 

  5. 5.

    Fortney, J. J., Marley, M. S. & Barnes, J. W. Planetary radii across five orders of magnitude in mass and stellar insolation: application to transits. Astrophys. J. 659, 1661–1672 (2007).

    ADS  Google Scholar 

  6. 6.

    Chen, J. & Kipping, D. Probabilistic forecasting of the masses and radii of other worlds. Astrophys. J. 834, 17 (2017).

    ADS  Google Scholar 

  7. 7.

    Deck, K. M., Agol, E., Holman, M. J. & Nesvorný, D. TTVFast: an efficient and accurate code for transit timing inversion problems. Astrophys. J. 787, 132 (2014).

    ADS  Google Scholar 

  8. 8.

    Mayor, M. et al. Setting new standards with HARPS. Messenger 114, 20–24 (2003).

    ADS  Google Scholar 

  9. 9.

    Pepe, F. A. et al. ESPRESSO: the Echelle spectrograph for rocky exoplanets and stable spectroscopic observations. Proc. SPIE 7735, 77350F (2010).

    Google Scholar 

  10. 10.

    Crossfield, I. J. M. et al. A nearby M star with three transiting super-Earths discovered by K2. Astrophys. J. 804, 10 (2015).

    ADS  Google Scholar 

  11. 11.

    Montet, B. T. et al. Stellar and planetary properties of K2 campaign 1 candidates and validation of 17 planets, including a planet receiving Earth-like insolation. Astrophys. J. 809, 25 (2015).

    ADS  Google Scholar 

  12. 12.

    Dittmann, J. A. et al. A temperate rocky super-Earth transiting a nearby cool star. Nature 544, 333–336 (2017).

    ADS  Google Scholar 

  13. 13.

    Lissauer, J. J. et al. Architecture and dynamics of Kepler’s candidate multiple transiting planet systems. Astrophys. J. Suppl. Ser. 197, 8 (2011).

    ADS  Google Scholar 

  14. 14.

    Batalha, N. E. et al. PandExo: a community tool for transiting exoplanet science with JWST HST. Publ. Astron. Soc. Pacif. 129, 064501 (2017).

    ADS  Google Scholar 

  15. 15.

    Kempton, E. M. R. et al. A framework for prioritizing the TESS planetary candidates most amenable to atmospheric characterization. Publ. Astron. Soc. Pacif. 130, 114401 (2018).

    ADS  Google Scholar 

  16. 16.

    Hansen, B. M. S. & Murray, N. Testing in situ assembly with the Kepler planet candidate sample. Astrophys. J. 775, 53 (2013).

    ADS  Google Scholar 

  17. 17.

    Millholland, S., Wang, S. & Laughlin, G. Kepler multi-planet systems exhibit unexpected intra-system uniformity in mass and radius. Astrophys. J. Lett. 849, 33 (2017).

    ADS  Google Scholar 

  18. 18.

    Luger, R. & Barnes, R. Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15, 119–143 (2015).

    ADS  Google Scholar 

  19. 19.

    Serindag, D. B. & Snellen, I. A. G. Testing the detectability of extraterrestrial O2 with the extremely large telescopes using real data with real noise. Astrophys. J. Lett. 871, 7 (2019).

    ADS  Google Scholar 

  20. 20.

    Schwieterman, E. W. et al. Identifying planetary biosignature impostors: spectral features of CO and O4 resulting from abiotic O2/O3 production. Astrophys. J. 819, L13 (2016).

    ADS  Google Scholar 

  21. 21.

    Takai, K. et al. Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl Acad. Sci. 105, 10949–10954 (2008).

    ADS  Google Scholar 

  22. 22.

    Noack, L. et al. Water-rich planets: how habitable is a water layer deeper than on Earth? Icarus 277, 215–236 (2016).

    ADS  Google Scholar 

  23. 23.

    Kane, S. R. Worlds without moons: exomoon constraints for compact planetary systems. Astrophys. J. 839, L19 (2017).

    ADS  Google Scholar 

  24. 24.

    Kopparapu, R. K. et al. Habitable zones around main-sequence stars: dependence on planetary mass. Astrophys. J. Lett. 787, 29 (2014).

    ADS  Google Scholar 

  25. 25.

    Günther, M. N. et al. Stellar flares from the first TESS data release: exploring a new sample of M-dwarfs. Preprint at (2019).

  26. 26.

    Newton, E. R., Irwin, J., Charbonneau, D., Berta-Thompson, Z. K. & Dittmann, J. A. The impact of stellar rotation on the detectability of habitable planets around M dwarfs. Astrophys. J. Lett. 821, 19 (2016).

    ADS  Google Scholar 

  27. 27.

    Lammer, H. et al. Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones. Astrobiology 7, 185–207 (2007).

    ADS  Google Scholar 

  28. 28.

    Cohen, O. et al. The interaction of Venus-like, M-dwarf planets with the stellar wind of their host star. Astrophys. J. 806, 41 (2015).

    ADS  Google Scholar 

  29. 29.

    Tilley, M. A., Segura, A., Meadows, V., Hawley, S. & Davenport, J. Modeling repeated M dwarf flaring at an Earth-like planet in the habitable zone: atmospheric effects for an unmagnetized planet. Astrobiology 19, 64–86 (2019).

    ADS  Google Scholar 

  30. 30.

    Gillon, M. et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542, 456–460 (2017).

    ADS  Google Scholar 

  31. 31.

    Stassun, K. G. et al. The TESS input catalog and candidate target list. Astron. J. 156, 102 (2018).

    ADS  Google Scholar 

  32. 32.

    Muirhead, P. S. et al. A catalog of cool dwarf targets for the transiting exoplanet survey satellite. Astron. J. 155, 180 (2018).

    ADS  Google Scholar 

  33. 33.

    Jenkins, J. M. The impact of solar-like variability on the detectability of transiting terrestrial planets. Astrophys. J. 575, 493–505 (2002).

    ADS  Google Scholar 

  34. 34.

    Jenkins, J. M. et al. Transiting planet search in the Kepler pipeline. In Software and Cyberinfrastructure for Astronomy Vol. 7740,77400D (SPIE, 2010).

  35. 35.

    Smith, J. C. et al. Kepler presearch data conditioning II—A Bayesian approach to systematic error correction. Publ. Astron. Soc. Pacif. 124, 1000 (2012).

    ADS  Google Scholar 

  36. 36.

    Stumpe, M. C. et al. Multiscale systematic error correction via wavelet-based bandsplitting in Kepler data. Publ. Astron. Soc. Pacif. 126, 100 (2014).

    ADS  Google Scholar 

  37. 37.

    Jenkins, J. M. et al. The TESS science processing operations center. In Software and Cyberinfrastructure for Astronomy IV Vol. 9913, 99133E (SPIE, 2016).

  38. 38.

    Jenkins, J. M. (ed) Kepler Data Processing Handbook KSCI-19081-002 (NASA, 2017).

  39. 39.

    Cameron, A. C. Extrasolar planets: astrophysical false positives. Nature 48–50 (2012).

    ADS  Google Scholar 

  40. 40.

    Günther, M. N. et al. A new yield simulator for transiting planets and false positives: application to the next generation transit survey. Mon. Not. R. Astron. Soc. 465, 3379–3389 (2017).

    ADS  Google Scholar 

  41. 41.

    Günther, M. N. et al. Unmasking the hidden NGTS-3Ab: a hot Jupiter in an unresolved binary system. Mon. Not. R. Astron. Soc. 478, 4720–4737 (2018).

    ADS  Google Scholar 

  42. 42.

    Lissauer, J. J. et al. Almost all of Kepler’s multiple-planet candidates are planets. Astrophys. J. 750, 112 (2012).

    ADS  Google Scholar 

  43. 43.

    Muirhead, P. S. et al. Characterizing the cool KOIs. VI. H- and K-band spectra of Kepler M dwarf planet-candidate hosts. Astrophys. J. Suppl. Ser. 213, 5 (2014).

    ADS  Google Scholar 

  44. 44.

    Gillon, M. et al. Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533, 221–224 (2016).

    ADS  Google Scholar 

  45. 45.

    Vanderspek, R. et al. TESS discovery of an ultra-short-period planet around the nearby M dwarf LHS 3844. Astrophys. J. Lett. 871, 24 (2019).

    ADS  Google Scholar 

  46. 46.

    Quinn, S. N. et al. Near-resonance in a system of sub-Neptunes from TESS. Preprint at (2019).

  47. 47.

    Twicken, J. D. et al. Kepler data validation. I. Architecture, diagnostic tests, and data products for vetting transiting planet candidates. Publ. Astron. Soc. Pacif. 130, 064502 (2018).

    ADS  Google Scholar 

  48. 48.

    Li, J. et al. Kepler data validation II. Transit model fitting and multiple-planet search. Publ. Astron. Soc. Pacif. 131, 024506 (2019).

    ADS  Google Scholar 

  49. 49.

    Rizzuto, A. C. et al. Zodiacal Exoplanets In Time (ZEIT). VIII. A two-planet system in Praesepe from K2 campaign 16. Astron. J. 156, 195 (2018).

    ADS  Google Scholar 

  50. 50.

    Winters, J. G. et al. The solar neighborhood. XXXV. Distances to 1404 m dwarf systems within 25 pc in the southern sky. Astron. J. 149, 5 (2015).

    ADS  Google Scholar 

  51. 51.

    Gaia Collaboration et al. Gaia data release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Google Scholar 

  52. 52.

    Winters, J. G. et al. The solar neighborhood. XLV. The stellar multiplicity rate of M dwarfs within 25 pc. Astron. J. 157, 216 (2019).

    ADS  Google Scholar 

  53. 53.

    Brown, T. M. et al. Las Cumbres observatory global telescope network. Publ. Astron. Soc. Pacif. 125, 1031 (2013).

    ADS  Google Scholar 

  54. 54.

    Jehin, E. et al. TRAPPIST: Transiting Planets And Planetesimals Small Telescope. Messenger 145, 2–6 (2011).

    ADS  Google Scholar 

  55. 55.

    Simcoe, R. A. et al. FIRE: A facility class near-infrared echelle spectrometer for the Magellan telescopes. Publ. Astron. Soc. Pacif. 125, 270 (2013).

    ADS  Google Scholar 

  56. 56.

    Newton, E. R., Charbonneau, D., Irwin, J. & Mann, A. W. An empirical calibration to estimate cool dwarf fundamental parameters from H-band spectra. Astrophys. J. 800, 85 (2015).

    ADS  Google Scholar 

  57. 57.

    Lenzen, R. et al. NAOS-CONICA first on sky results in a variety of observing modes. In Instrument Design and Performance for Optical/Infrared Ground-based Telescopes (eds Iye, M. & Moorwood, A. F. M.) Vol. 4841, 944–952 (SPIE, 2003).

  58. 58.

    Rousset, G. et al. NAOS, the first AO system of the VLT: on-sky performance. In Adaptive Optical System Technologies II (eds Wizinowich, P. L. & Bonaccini, D.) Vol. 4839, 140–149 (SPIE, 2003).

  59. 59.

    Morton, T. D. An efficient automated validation procedure for exoplanet transit candidates. Astrophys. J. 761, 6 (2012).

    ADS  Google Scholar 

  60. 60.

    Morton, T. D. VESPA: false positive probabilities calculator. Astrophysics Source Code Library 2015ascl.soft03011M (2015).

  61. 61.

    Gaia Collaboration et al. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Google Scholar 

  62. 62.

    Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    ADS  Google Scholar 

  63. 63.

    Zacharias, N. et al. The fourth US naval observatory CCD astrograph catalog (UCAC4). Astron. J. 145, 44 (2013).

    ADS  Google Scholar 

  64. 64.

    Stassun, K. G. & Torres, G. Evidence for a systematic offset of −80 μas in the Gaia DR2 parallaxes. Astrophys. J. 862, 61 (2018).

    ADS  Google Scholar 

  65. 65.

    Jao, W.-C. et al. Distance-dependent offsets between parallaxes for nearby stars and Gaia DR1 parallaxes. Astrophys. J. Lett. 832, 18 (2016).

    ADS  Google Scholar 

  66. 66.

    Benedict, G. F. et al. The solar neighborhood. XXXVII: the mass-luminosity relation for main-sequence M dwarfs. Astron. J. 152, 141 (2016).

    ADS  Google Scholar 

  67. 67.

    Boyajian, T. S. et al. Stellar diameters and temperatures. II. Main-sequence K- and M-stars. Astrophys. J. 757, 112 (2012).

    ADS  Google Scholar 

  68. 68.

    Mann, A. W. et al. How to constrain your M dwarf. II. The mass−luminosity−metallicity relation from 0.075 to 0.70 solar masses. Astrophys. J. 871, 63 (2019).

    ADS  Google Scholar 

  69. 69.

    Mann, A. W., Feiden, G. A., Gaidos, E., Boyajian, T. & von Braun, K. How to constrain your M dwarf: measuring effective temperature, bolometric luminosity, mass, and radius. Astrophys. J. 804, 64 (2015).

    ADS  Google Scholar 

  70. 70.

    Pecaut, M. J. & Mamajek, E. E. Intrinsic colors, temperatures, and bolometric corrections of pre-main-sequence stars. Astrophys. J., Suppl. Ser. 208, 9 (2013).

    ADS  Google Scholar 

  71. 71.

    Dittmann, J. A., Irwin, J. M., Charbonneau, D. & Newton, E. R. Calibration of the M Earth photometric system: optical magnitudes and photometric metallicity estimates for 1802 nearby M-dwarfs. Astrophys. J. 818, 153 (2016).

    ADS  Google Scholar 

  72. 72.

    Mamajek, E. E. & Hillenbrand, L. A. Improved age estimation for solar-type dwarfs using activity-rotation diagnostics. Astrophys. J. 687, 1264–1293 (2008).

    ADS  Google Scholar 

  73. 73.

    Newton, E. R. et al. The rotation and galactic kinematics of mid-M dwarfs in the solar neighborhood. Astrophys. J. 821, 93 (2016).

    ADS  Google Scholar 

  74. 74.

    Newton, E. R., Mondrik, N., Irwin, J., Winters, J. G. & Charbonneau, D. New rotation period measurements for M dwarfs in the Southern Hemisphere: an abundance of slowly rotating, fully convective stars. Astron. J. 156, 217 (2018).

    ADS  Google Scholar 

  75. 75.

    Günther, M. N. & Daylan, T. allesfitter: flexible star and exoplanet inference from photometry and radial velocity. Astrophysics Source Code Library 2019ascl.soft03003G (2019).

  76. 76.

    Maxted, P. F. L. ellc: a fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets. Astron. Astrophys. 591, A111 (2016).

    ADS  Google Scholar 

  77. 77.

    Davenport, J. R. A. et al. Kepler flares. II. The temporal morphology of white-light flares on GJ 1243. Astrophys. J. 797, 122 (2014).

    ADS  Google Scholar 

  78. 78.

    Speagle, J. S. dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences. Preprint at (2019).

  79. 79.

    Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pacif. 125, 306 (2013).

    ADS  Google Scholar 

  80. 80.

    Foreman-Mackey, D., Agol, E., Ambikasaran, S. & Angus, R. celerite: scalable 1D Gaussian processes in C++, Python, and Julia. Astrophysics Source Code Library 2017ascl.soft09008F (2017).

  81. 81.

    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    MathSciNet  MATH  Google Scholar 

  82. 82.

    Seager, S. & Mallén-Ornelas, G. A unique solution of planet and star parameters from an extrasolar planet transit light curve. Astrophys. J. 585, 1038–1055 (2003).

    ADS  Google Scholar 

  83. 83.

    Eastman, J. EXOFASTv2: generalized publication-quality exoplanet modeling code. Astrophysics Source Code Library 2017ascl.soft10003E (2017).

  84. 84.

    Hippke, M. & Heller, R. Optimized transit detection algorithm to search for periodic transits of small planets. Astron. Astrophys. 623, A39 (2019).

    ADS  Google Scholar 

  85. 85.

    Kovács, G., Zucker, S. & Mazeh, T. A box-fitting algorithm in the search for periodic transits. Astron. Astrophys. 391, 369–377 (2002).

    ADS  Google Scholar 

  86. 86.

    Mandel, K. & Agol, E. Analytic light curves for planetary transit searches. Astrophys. J. Lett. 580, L171 (2002).

    ADS  Google Scholar 

  87. 87.

    Kreidberg, L. batman: BAsic transit model cAlculatioN in Python. Publ. Astron. Soc. Pacif. 127, 1161 (2015).

    ADS  Google Scholar 

  88. 88.

    van Rossum, G. Python tutorial. Technical Report CS-R9526 (Centrum voor Wiskunde en Informatica (CWI), 1995).

  89. 89.

    van der Walt, S., Colbert, S. C. & Varoquaux, G. The numpy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30 (2011).

    Google Scholar 

  90. 90.

    Jones, E. et al. SciPy: Open source scientific tools for Python (2001);

  91. 91.

    Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Google Scholar 

  92. 92.

    Foreman-Mackey, D. scatterplot matrices in Python. J. Open Source Softw. 24, (2016).

    ADS  Google Scholar 

  93. 93.

    Jensen, E. Tapir: a web interface for transit/eclipse observability. Astrophysics Source Code Library 2013ascl.soft06007J (2013).

  94. 94.

    Collins, K. A., Kielkopf, J. F., Stassun, K. G. & Hessman, F. V. AstroImageJ: image processing and photometric extraction for ultra-precise astronomical light curves. Astron. J. 153, 77 (2017).

    ADS  Google Scholar 

  95. 95.

    Rein, H. & Liu, S.-F. REBOUND: an open-source multi-purpose N-body code for collisional dynamics. Astron. Astrophys. 537, A128 (2012).

    ADS  Google Scholar 

  96. 96.

    Zeng, L., Sasselov, D. D. & Jacobsen, S. B. Mass-radius relation for rocky planets based on PREM. Astrophys. J. 819, 127 (2016).

    ADS  Google Scholar 

Download references


We thank B. J. Fulton and E. Petigura for providing their data to recreate the radius gap histogram in Fig. 2. Funding for the TESS mission is provided by NASA’s Science Mission directorate. We acknowledge the use of public TESS Alert data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. This research has made use of the Exoplanet Follow-up Observation Program website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This paper includes data collected by the TESS mission, which are publicly available from the Mikulski Archive for Space Telescopes (MAST). Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant FRFC 2.5.594.09.F, with the participation of the Swiss National Science Fundation (SNF). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. This work uses observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 102.C-0503(A). This work makes use of results from the European Space Agency (ESA) space mission Gaia. Gaia data are being processed by the Gaia Data Processing and Analysis Consortium (DPAC). Funding for the DPAC is provided by national institutions, in particular the institutions participating in the Gaia MultiLateral Agreement (MLA). This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of NASA’s Astrophysics Data System Bibliographic Services. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. M.N.G., C.X.H. and J.B. acknowledge support from MIT’s Kavli Institute as Torres postdoctoral fellows. D.D. acknowledges support for this work provided by NASA through Hubble Fellowship grant HST-HF2-51372.001-A, awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy for NASA, under contract NAS5-26555. T.D. acknowledges support from MIT’s Kavli Institute as a Kavli postdoctoral fellow. Work by B.T.M. was performed under contract with the Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. J.G.W. is supported by a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. S.W. thanks the Heising-Simons Foundation for their generous support. M.G. and E.J. are FNRS Senior Research Associates. K.H. acknowledges support from STFC grant ST/R000824/1. B.R.-A. acknowledges funding support from Conicyt Pai/Concurso Nacional Inserción En La Academia, Convocatoria 2015 79150050 and Fondecyt through grant 11181295. J.C.S. acknowledges funding support from Spanish public funds for research under projects ESP2017-87676-2-2 and RYC-2012-09913 (Ramón y Cajal programme) of the Spanish Ministry of Science and Education. J.A.D. is a 51 Pegasi b Postdoctoral Fellow.

Author information




M.N.G. led the project and performed and interpreted the global analyses. F.J.P., K.A.C., J.D.A., K.B., K.I.C., T.G., M.G., K.H., G.I., E.J., J.F.K., F.M., G.M., E.P., H.M.R., R.S., J.C.S., T.-G.T., A.S. and I.A.W. carried out the TFOP SG1 photometric follow-up. A.D.F., B.T.M., L.G.B., J.B., J.L.B., M.I. and S.N.Q. carried out the TFOP SG2 spectroscopic follow-up. E.M., D.R.C., I.C., S.B.H., R.A.M. and J.S. performed the TFOP SG3 direct imaging follow-up. F.J.P. worked on the dynamic stability and tides simulations. J.A.D. worked on the stellar parameters (along with A.D.F. and B.T.M.), TTV simulations and Australia National University spectral analysis. D.D. and T.D. performed the global light curve analysis and TTV analysis and D.D. additionally produced the atmospheric characterization prospects. S.R.K. worked on the dynamic stability simulations and habitability prospects. A.D.F. and B.T.M. worked on the FIRE spectra analysis, and C.H., T.D.M. and A.B. worked on the TESS light curve analysis, false positive analysis and stellar parameter analysis, respectively. J.J.L. looked at the orbital dynamics, resonances, and TTVs. A.V. did the archival image analysis and TESS light curve analysis. S.W. contributed to the global light curve analysis. J.G.W. performed the overluminous binary analysis and Hertzsprung−Russell diagram analysis. G.R.R., R.K.V., D.W.L., S.S., J.N.W. and J.M.J. are TESS architects. N.B., N.G., S.L. and B.R.-A. are members of the TESS Science office. D.A.C., G.F., E.B.T. and J.D.T. are members of the TESS Science Processing Operations Center, while M.F. is a member of the TESS Payload Operations Center.

Corresponding author

Correspondence to Maximilian N. Günther.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Astronomy thanks Oscar Barragán, Alexis Smith and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figures 1–7, Supplementary Tables 1–4, Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Günther, M.N., Pozuelos, F.J., Dittmann, J.A. et al. A super-Earth and two sub-Neptunes transiting the nearby and quiet M dwarf TOI-270. Nat Astron 3, 1099–1108 (2019).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing