Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Supernova impostors and other gap transients

Besides supernovae, few astrophysical processes can release close to 1051 erg of energy. A growing number of stellar outbursts are now recognized to have energy releases matching those of faint supernovae. These transients can be triggered by various mechanisms, and their discrimination is sometimes a tricky issue.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Summary of the main properties of gap transients.
Fig. 2: The diversity of gap transients.

References

  1. 1.

    Kasliwal, M. M. Publ. Astron. Soc. Aust. 29, 482–488 (2012).

    ADS  Article  Google Scholar 

  2. 2.

    Bond, H. D. et al. Astrophys. J. Lett. 695, L154 (2009).

    ADS  Article  Google Scholar 

  3. 3.

    Botticella, M. T. et al. Mon. Not. R. Astron. Soc. 398, 1041–1068 (2009).

    ADS  Article  Google Scholar 

  4. 4.

    Smith, N. et al. Astrophys. J. Lett. 697, L49 (2009).

    ADS  Article  Google Scholar 

  5. 5.

    Adams, S. M. et al. Mon. Not. R. Astron. Soc. 460, 1645–1657 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Moriya, T. J. et al. Astron. Astrophys. 569, A57 (2014).

    Article  Google Scholar 

  7. 7.

    Tylenda, R. et al. Astron. Astrophys. 528, A114 (2011).

    Article  Google Scholar 

  8. 8.

    Mason, E. et al. Astron. Astrophys. 516, A516 (2010).

    Article  Google Scholar 

  9. 9.

    Kochanek, C. S. et al. Mon. Not. R. Astron. Soc. 443, 1319–1328 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Smith, N. et al. Mon. Not. R. Astron. Soc. 458, 950–962 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Van Dyk, S. D. et al. Publ. Astron. Soc. Pac. 112, 1532–1541 (2000).

    ADS  Article  Google Scholar 

  12. 12.

    Maund, J. R. et al. Mon. Not. R. Astron. Soc. 369, 390–406 (2006).

    ADS  Article  Google Scholar 

  13. 13.

    Humphreys, R. M. & Davidson, K. Publ. Astron. Soc. Pac. 106, 1025–1051 (1994).

    ADS  Article  Google Scholar 

  14. 14.

    Pastorello, A. et al. Mon. Not. R. Astron. Soc. 408, 181–198 (2010).

    ADS  Article  Google Scholar 

  15. 15.

    Smith, N. et al. Mon. Not. R. Astron. Soc. 455, 3546–3560 (2016).

    ADS  Article  Google Scholar 

  16. 16.

    Tartaglia, L. et al. Astrophys. J. Lett. 823, L23 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Owocki, S. P. et al. Astrophys. J. 616, 525–541 (2004).

    ADS  Article  Google Scholar 

  18. 18.

    Ofek, E. O. et al. Astrophys. J. 789, 104 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    Fraser, M. et al. Astrophys. J. Lett. 779, L8 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    Schlegel, E. M. Mon. Not. R. Astron. Soc. 244, 269–271 (1990).

    ADS  Google Scholar 

  21. 21.

    Pastorello, A. et al. Nature 447, 829–832 (2007).

    ADS  Article  Google Scholar 

  22. 22.

    Foley, R. J. et al. Astrophys. J. Lett. 657, L105 (2007).

    ADS  Article  Google Scholar 

  23. 23.

    Pastorello, A. et al. Mon. Not. R. Astron. Soc. 389, 113–130 (2008).

    ADS  Article  Google Scholar 

  24. 24.

    Maund, J. R. et al. Astrophys. J. 833, 128 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Smith, N. et al. Astron. J. 139, 1451–1467 (2010).

    ADS  Article  Google Scholar 

  26. 26.

    Pastorello, A. et al. Astrophys. J. 767, 1 (2013).

    ADS  Article  Google Scholar 

  27. 27.

    Mauerhan, J. et al. Mon. Not. R. Astron. Soc. 430, 1801–1810 (2013).

    ADS  Article  Google Scholar 

  28. 28.

    Fraser, M. et al. Mon. Not. R. Astron. Soc. 433, 1312–1337 (2013).

    ADS  Article  Google Scholar 

  29. 29.

    Margutti, R. et al. Astrophys. J. 780, 21 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    Graham, M. L. et al. Mon. Not. R. Astron. Soc. 469, 1559–1572 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    Reguitti, A. et al. Mon. Not. R. Astron. Soc. 482, 2750–2769 (2019).

    ADS  Google Scholar 

  32. 32.

    Van Dyk, S. D. et al. Publ. Astron. Soc. Pac. 117, 553–562 (2005).

    ADS  Article  Google Scholar 

  33. 33.

    Kuncarayakti, H. et al. Mon. Not. R. Astron. Soc. 458, 2063–2073 (2016).

    ADS  Article  Google Scholar 

  34. 34.

    Zhao, H.-H. et al. Mon. Not. R. Astron. Soc. 468, 1551–1555 (2017).

    ADS  Article  Google Scholar 

  35. 35.

    Smith, I. A. et al. Astrophys. J. 870, 59 (2019).

    ADS  Article  Google Scholar 

  36. 36.

    Smith, N. et al. Astrophys. J. 697, L49 (2009).

    ADS  Article  Google Scholar 

  37. 37.

    Szczygieł, D. M. et al. Astrophys. J. 750, 77 (2012).

    ADS  Article  Google Scholar 

  38. 38.

    Humphreys, R. M. et al. Astrophys. J. 743, 118 (2011).

    ADS  Article  Google Scholar 

  39. 39.

    Cai, Y.-Z. et al. Mon. Not. R. Astron. Soc. 480, 3424–3445 (2018).

    ADS  Google Scholar 

  40. 40.

    Kankare, E. et al. Astron. Astrophys. 581, L4 (2015).

    ADS  Article  Google Scholar 

  41. 41.

    Mauerhan, J. C. et al. Mon. Not. R. Astron. Soc. 447, 1922–1934 (2015).

    ADS  Article  Google Scholar 

  42. 42.

    Blagorodnova, N. et al. Astrophys. J. 834, 107 (2017).

    ADS  Article  Google Scholar 

  43. 43.

    Wagner, R. M. et al. Publ. Astron. Soc. Pac. 116, 326–336 (2004).

    ADS  Article  Google Scholar 

  44. 44.

    Elias-Rosa, N. et al. Mon. Not. R. Astron. Soc. 463, 3894–3920 (2016).

    ADS  Article  Google Scholar 

  45. 45.

    Thöne, C. C. et al. Astron. Astrophys. 599, A129 (2017).

    Article  Google Scholar 

  46. 46.

    Fraser, M. et al. Mon. Not. R. Astron. Soc. 453, 3886–3905 (2015).

    ADS  Article  Google Scholar 

  47. 47.

    Mauerhan, J. C. et al. Mon. Not. R. Astron. Soc. 431, 2599–2611 (2013).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

M.F. is supported by a Royal Society–Science Foundation Ireland University Research Fellowship. A.P. and M.F. thank their many students, collaborators and colleagues without whose ongoing collaboration this article could not have been written.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrea Pastorello.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pastorello, A., Fraser, M. Supernova impostors and other gap transients. Nat Astron 3, 676–679 (2019). https://doi.org/10.1038/s41550-019-0809-9

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing