The gravitational-wave detection of exoplanets orbiting white dwarf binaries using LISA


So far, around 4,000 exoplanets have been discovered orbiting a large variety of stars. Owing to the sensitivity limits of the currently used detection techniques, these planets populate zones restricted either to the solar neighbourhood or towards the galactic bulge. This selection problem prevents us from unveiling the true galactic planetary population and is not set to change for the next two decades. Here, we present a detection method that overcomes this issue and that will allow us to detect massive exoplanets using gravitational-wave astronomy. We show that the Laser Interferometer Space Antenna (LISA) mission can characterize new circumbinary exoplanets orbiting white dwarf binaries everywhere in our Galaxy—a population of exoplanets so far completely unprobed—as well as detecting extragalactic bound exoplanets in the Magellanic Clouds. Such a method is not limited by stellar activity and, in extremely favourable cases, will allow LISA to detect planets down to 50 Earth masses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Geometry of the DWD–CBP three-body system.
Fig. 2: LISA estimation of planetary parameters.
Fig. 3: Selection functions of both LISA and of main EM exoplanetary projects.
Fig. 4: Location of known planets and expected LISA DWDs.

Data availability

The data that support the plots within this paper and other findings of this study are available from the authors upon reasonable request.


  1. 1.

    Winn, J. N. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 1949–1966 (Springer, 2018).

  2. 2.

    Fulton, B. J. et al. The California-Kepler Survey. III. A gap in the radius distribution of small planets. Astron. J. 154, 109 (2017).

    ADS  Article  Google Scholar 

  3. 3.

    Amaro-Seoane, P. et al. Laser Interferometer Space Antenna. Preprint at (2017).

  4. 4.

    Raghavan, D. et al. A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. Suppl. 190, 1–42 (2010).

    ADS  Article  Google Scholar 

  5. 5.

    Duchêne, G. & Kraus, A. Stellar multiplicity. Annu. Rev. Astron. Astrophys. 51, 269–310 (2013).

    ADS  Article  Google Scholar 

  6. 6.

    Althaus, L. G., Córsico, A. H., Isern, J. & García-Berro, E. Evolutionary and pulsational properties of white dwarf stars. Astron. Astrophys. Rev. 18, 471–566 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    Veras, D. Post-main-sequence planetary system evolution. R. Soc. Open Sci. 3, 150571 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  8. 8.

    Sigurdsson, S., Richer, H. B., Hansen, B. M., Stairs, I. H. & Thorsett, S. E. A young white dwarf companion to pulsar B1620-26: evidence for early planet formation. Science 301, 193–196 (2003).

    ADS  Article  Google Scholar 

  9. 9.

    Korol, V. et al. Prospects for detection of detached double white dwarf binaries with Gaia, LSST and LISA. Mon. Not. R. Astron. Soc. 470, 1894–1910 (2017).

    ADS  Article  Google Scholar 

  10. 10.

    Korol, V., Koop, O. & Rossi, E. M. Detectability of double white dwarfs in the local group with LISA. Astrophys. J. 866, L20 (2018).

    ADS  Article  Google Scholar 

  11. 11.

    Robson, T., Cornish, N. J., Tamanini, N. & Toonen, S. Detecting hierarchical stellar systems with LISA. Phys. Rev. D 98, 064012 (2018).

    ADS  Article  Google Scholar 

  12. 12.

    Kostov, V. B., Moore, K., Tamayo, D., Jayawardhana, R. & Rinehart, S. A. Tatooine’s future: the eccentric response of Kepler’s circumbinary planets to common-envelope evolution of their host stars. Astrophys. J. 832, 183 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    Zuckerman, B., Melis, C., Klein, B., Koester, D. & Jura, M. Ancient planetary systems are orbiting a large fraction of white dwarf stars. Astrophys. J. 722, 725–736 (2010).

    ADS  Article  Google Scholar 

  14. 14.

    Veras, D. & Tout, C. A. The great escape – II. Exoplanet ejection from dying multiple-star systems. Mon. Not. R. Astron. Soc. 422, 1648–1664 (2012).

    ADS  Article  Google Scholar 

  15. 15.

    Schleicher, D. R. G. & Dreizler, S. Planet formation from the ejecta of common envelopes. Astron. Astrophys. 563, A61 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Ferrari, V., Berti, E., D’Andrea, M. & Ashtekar, A. Gravitational waves emitted by extrasolar planetary systems. Int. J. Mod. Phys. D 9, 495–509 (2000).

    ADS  Google Scholar 

  17. 17.

    Berti, E. & Ferrari, V. Excitation of g-modes of solar-type stars by an orbiting companion. Phys. Rev. D 63, 064031 (2001).

    ADS  Article  Google Scholar 

  18. 18.

    Ain, A., Kastha, S. & Mitra, S. Stochastic gravitational wave background from exoplanets. Phys. Rev. D 91, 124023 (2015).

    ADS  Article  Google Scholar 

  19. 19.

    Cunha, J. V., Silva, F. E. & Lima, J. A. S. Gravitational waves from ultra-short period exoplanets. Mon. Not. R. Astron. Soc. 480, L28 (2018).

    ADS  Article  Google Scholar 

  20. 20.

    Wong, K. W. K., Berti, E., Gabella, W. E. & Holley-Bockelmann, K. On the possibility of detecting ultra-short period exoplanets with LISA. Mon. Not. R. Astron. Soc. 483, L33–L36 (2019).

    ADS  Article  Google Scholar 

  21. 21.

    Takahashi, R. & Seto, N. Parameter estimation for galactic binaries by LISA. Astrophys. J. 575, 1030–1036 (2002).

    ADS  Article  Google Scholar 

  22. 22.

    Thompson, T. A. Accelerating compact object mergers in triple systems with the Kozai resonance: a mechanism for “prompt” Type Ia supernovae, gamma-ray bursts, and other exotica. Astrophys. J. 741, 82 (2011).

    ADS  Article  Google Scholar 

  23. 23.

    Seto, N. Highly eccentric Kozai mechanism and gravitational-wave observation for neutron star binaries. Phys. Rev. Lett. 111, 061106 (2013).

    ADS  Article  Google Scholar 

  24. 24.

    Valsecchi, F., Farr, W. M., Willems, B., Deloye, C. J. & Kalogera, V. Tidally-induced apsidal precession in double white dwarfs: a new mass measurement tool with LISA. Astrophys. J. 745, 137 (2012).

    ADS  Article  Google Scholar 

  25. 25.

    Kremer, K., Breivik, K., Larson, S. L. & Kalogera, V. Accreting double white dwarf binaries: implications for LISA. Astrophys. J. 846, 95 (2017).

    ADS  Article  Google Scholar 

  26. 26.

    Breivik, K. et al. Characterizing accreting double white dwarf binaries with the Laser Interferometer Space Antenna and Gaia. Astrophys. J. 854, L1 (2018).

    ADS  Article  Google Scholar 

  27. 27.

    Nelemans, G., Yungelson, L. R. & Portegies Zwart, S. F. Short-period AM CVn systems as optical, X-ray and gravitational wave sources. Mon. Not. R. Astron. Soc. 349, 181–192 (2004).

    ADS  Article  Google Scholar 

  28. 28.

    Cutler, C. Angular resolution of the LISA gravitational wave detector. Phys. Rev. D 57, 7089–7102 (1998).

    ADS  Article  Google Scholar 

  29. 29.

    Sumi, T. et al. Unbound or distant planetary mass population detected by gravitational microlensing. Nature 473, 349–352 (2011).

    ADS  Article  Google Scholar 

  30. 30.

    Dai, X. & Guerras, E. Probing extragalactic planets using quasar microlensing. Astrophys. J. Lett. 853, L27 (2018).

    ADS  Article  Google Scholar 

  31. 31.

    Korol, V., Rossi, E. M. & Barausse, E. A multimessenger study of the Milky Way’s stellar disc and bulge with LISA, Gaia, and LSST. Mon. Not. R. Astron. Soc. 483, 5518–5533 (2019).

    ADS  Article  Google Scholar 

  32. 32.

    Luyten, W. J. White Dwarfs (Minneapolis, University of Minnesota, 1970).

  33. 33.

    Agol, E. Transit surveys for Earths in the habitable zones of white dwarfs. Astrophys. J. Lett. 731, L31 (2011).

    ADS  Article  Google Scholar 

  34. 34.

    Spalding, C., Batygin, K. & Adams, F. C. Resonant removal of exomoons during planetary migration. Astrophys. J. 817, 18 (2016).

    ADS  Article  Google Scholar 

  35. 35.

    Kostov, V. B. et al. Kepler-1647b: the largest and longest-period Kepler transiting circumbinary planet. Astrophys. J. 827, 86 (2016).

    ADS  Article  Google Scholar 

  36. 36.

    Ivanova, N. et al. Common envelope evolution: where we stand and how we can move forward. Astron. Astrophys. Rev. 21, 59 (2013).

    ADS  Article  Google Scholar 

  37. 37.

    Turrini, D., Nelson, R. P. & Barbieri, M. The role of planetary formation and evolution in shaping the composition of exoplanetary atmospheres. Exp. Astron. 40, 501–522 (2015).

    ADS  Article  Google Scholar 

  38. 38.

    Alexander, M. E., Chau, W. Y. & Henriksen, R. N. Orbital evolution of a singly condensed, close binary, by mass loss from the primary and by accretion drag on the condensed member. Astrophys. J. 204, 879–888 (1976).

    ADS  Article  Google Scholar 

  39. 39.

    Holman, M. J. & Wiegert, P. A. Long-term stability of planets in binary systems. Astron. J. 117, 621–628 (1999).

    ADS  Article  Google Scholar 

  40. 40.

    Pilat-Lohinger, E., Funk, B. & Dvorak, R. Stability limits in double stars. A study of inclined planetary orbits. Astron. Astrophys. 400, 1085–1094 (2003).

    ADS  Article  Google Scholar 

  41. 41.

    Debes, J. H. & Sigurdsson, S. Are there unstable planetary systems around white dwarfs? Astrophys. J. 572, 556–565 (2002).

    ADS  Article  Google Scholar 

  42. 42.

    Livio, M., Pringle, J. E. & Wood, K. Disks and planets around massive white dwarfs. Astrophys. J. Lett. 632, L37–L39 (2005).

    ADS  Article  Google Scholar 

  43. 43.

    Faedi, F., West, R. G., Burleigh, M. R., Goad, M. R. & Hebb, L. Detection limits for close eclipsing and transiting substellar and planetary companions to white dwarfs in the WASP survey. Mon. Not. R. Astron. Soc. 410, 899–911 (2011).

    ADS  Article  Google Scholar 

  44. 44.

    Quarles, B., Satyal, S., Kostov, V., Kaib, N. & Haghighipour, N. Stability limits of circumbinary planets: is there a pile-up in the Kepler CBPs? Astrophys. J. 856, 150 (2018).

    ADS  Article  Google Scholar 

  45. 45.

    Mustill, A. J. et al. Main-sequence progenitor configurations of the NN Ser candidate circumbinary planetary system are dynamically unstable. Mon. Not. R. Astron. Soc. 436, 2515–2521 (2013).

    ADS  Article  Google Scholar 

  46. 46.

    Portegies Zwart, S. Planet-mediated precision reconstruction of the evolution of the cataclysmic variable HU Aquarii. Mon. Not. R. Astron. Soc. 429, L45–L49 (2013).

    ADS  Article  Google Scholar 

  47. 47.

    Armano, M. et al. Sub-femto-g free fall for space-based gravitational wave observatories: LISA Pathfinder results. Phys. Rev. Lett. 116, 231101 (2016).

    ADS  Article  Google Scholar 

  48. 48.

    Armano, M. et al. Beyond the required LISA free-fall performance: new LISA Pathfinder results down to 20 μHz. Phys. Rev. Lett. 120, 061101 (2018).

    ADS  Article  Google Scholar 

  49. 49.

    Adams, D. The Hitchhiker’s Guide to the Galaxy (Pan Books, 1979).

  50. 50.

    Cornish, N. J. & Larson, S. L. LISA data analysis: source identification and subtraction. Phys. Rev. D 67, 103001 (2003).

    ADS  Article  Google Scholar 

  51. 51.

    Tokovinin, A., Thomas, S., Sterzik, M. & Udry, S. Tertiary companions to close spectroscopic binaries. Astron. Astrophys. 450, 681–693 (2006).

    ADS  Article  Google Scholar 

  52. 52.

    Pepe, F. et al. ESPRESSO: the next European exoplanet hunter. Astron. Nachr. 335, 8–20 (2014).

    ADS  Article  Google Scholar 

  53. 53.

    Tinetti, G. et al. A chemical survey of exoplanets with ARIEL. Exp. Astron. 46, 135–209 (2018).

    ADS  Article  Google Scholar 

  54. 54.

    Penny, M. T. et al. Predictions of the WFIRST microlensing survey. I. Bound planet detection rates. Astrophys. J. Suppl. Ser. 241, 3 (2019).

    ADS  Article  Google Scholar 

  55. 55.

    Lagrange, A.-M. Direct imaging of exoplanets. Phil. Trans. R. Soc. Lond. Ser. A 372, 20130090 (2014).

    ADS  Article  Google Scholar 

  56. 56.

    Beichman, C. A. et al. Imaging young giant planets from ground and space. Publ. Astron. Soc. Pac. 122, 162 (2010).

    ADS  Article  Google Scholar 

  57. 57.

    Perryman, M., Hartman, J., Bakos, G. Á. & Lindegren, L. Astrometric exoplanet detection with Gaia. Astrophys. J. 797, 14 (2014).

    ADS  Article  Google Scholar 

  58. 58.

    Althaus, L. G., García-Berro, E., Isern, J. & Córsico, A. H. Mass-radius relations for massive white dwarf stars. Astron. Astrophys. 441, 689–694 (2005).

    ADS  Article  Google Scholar 

  59. 59.

    Renedo, I. et al. New cooling sequences for old white dwarfs. Astrophys. J. 717, 183–195 (2010).

    ADS  Article  Google Scholar 

  60. 60.

    Deeg, H. J. & Alonso, R. in Handbook of Exoplanets (eds Deeg, H. J. & Belmonte, J. A.) 633–657 (Springer, 2018).

  61. 61.

    Pierens, A. & Nelson, R. P. Orbital alignment of circumbinary planets that form in misaligned circumbinary discs: the case of Kepler-413b. Mon. Not. R. Astron. Soc. 477, 2547–2559 (2018).

    ADS  Article  Google Scholar 

  62. 62.

    Foucart, F. & Lai, D. Assembly of protoplanetary disks and inclinations of circumbinary planets. Astrophys. J. 764, 106 (2013).

    ADS  Article  Google Scholar 

  63. 63.

    Martin, D. V. & Triaud, A. H. M. J. Planets transiting non-eclipsing binaries. Astron. Astrophys. 570, A91 (2014).

    ADS  Article  Google Scholar 

  64. 64.

    Martin, D. V. Circumbinary planets – II. When transits come and go. Mon. Not. R. Astron. Soc. 465, 3235–3253 (2017).

    ADS  Article  Google Scholar 

  65. 65.

    Holman, M. J. & Murray, N. W. The use of transit timing to detect terrestrial-mass extrasolar planets. Science 307, 1288–1291 (2005).

    ADS  Article  Google Scholar 

  66. 66.

    Armstrong, D. et al. Placing limits on the transit timing variations of circumbinary exoplanets. Mon. Not. R. Astron. Soc. 434, 3047–3054 (2013).

    ADS  Article  Google Scholar 

  67. 67.

    Kostov, V. B. et al. Kepler-413b: a slightly misaligned, Neptune-size transiting circumbinary planet. Astrophys. J. 784, 14 (2014).

    ADS  Article  Google Scholar 

  68. 68.

    Liu, H.-G., Wang, Y., Zhang, H. & Zhou, J.-L. Transits of planets with small intervals in circumbinary systems. Astrophys. J. 790, 141 (2014).

    ADS  Article  Google Scholar 

  69. 69.

    Hermes, J. J. et al. When flux standards go wild: white dwarfs in the age of Kepler. Mon. Not. R. Astron. Soc. 468, 1946–1952 (2017).

    ADS  Article  Google Scholar 

  70. 70.

    Sahlmann, J., Triaud, A. H. M. J. & Martin, D. V. Gaia’s potential for the discovery of circumbinary planets. Mon. Not. R. Astron. Soc. 447, 287–297 (2015).

    ADS  Article  Google Scholar 

  71. 71.

    Winget, D. E. & Kepler, S. O. Pulsating white dwarf stars and precision asteroseismology. Annu. Rev. Astron. Astrophys. 46, 157–199 (2008).

    ADS  Article  Google Scholar 

  72. 72.

    Qian, S.-B. et al. A circumbinary planet in orbit around the short-period white dwarf eclipsing binary RR Cae. Mon. Not. R. Astron. Soc. 422, L24–L27 (2012).

    ADS  Article  Google Scholar 

  73. 73.

    Beuermann, K., Dreizler, S. & Hessman, F. V. The quest for companions to post-common envelope binaries. IV. The 2:1 mean-motion resonance of the planets orbiting NN Serpentis. Astron. Astrophys. 555, A133 (2013).

    ADS  Article  Google Scholar 

  74. 74.

    Bennett, D. P. et al. The first circumbinary planet found by microlensing: OGLE-2007-BLG-349L(AB)c. Astron. J. 152, 125 (2016).

    ADS  Article  Google Scholar 

  75. 75.

    Luhn, J. K., Penny, M. T. & Gaudi, B. S. Caustic structures and detectability of circumbinary planets in microlensing. Astrophys. J. 827, 61 (2016).

    ADS  Article  Google Scholar 

  76. 76.

    Casertano, S. et al. Double-blind test program for astrometric planet detection with Gaia. Astron. Astrophys. 482, 699–729 (2008).

    ADS  Article  Google Scholar 

  77. 77.

    Sozzetti, A. et al. Astrometric detection of giant planets around nearby M dwarfs: the Gaia potential. Mon. Not. R. Astron. Soc. 437, 497–509 (2014).

    ADS  Article  Google Scholar 

Download references


We thank E. Berti, A. Buonanno, V. Korol, P.-O. Lagage, C. Miller, A. Petiteau, E. M. Rossi and G. Tinetti for their suggestions and comments. We are particularly thankful to V. Korol for providing the DWD data beyond Fig. 3 of ref. 31. C.D. acknowledges support from the LabEx P2IO, the French ANR contract 05-BLAN-NT09-573739. We acknowledge the use of the Python package mw plot ( This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program.

Author information




N.T. performed the theoretical and numerical studies to produce and analyse the results presented in the paper. C.D. assessed the feasibility within the exoplanetary context, and investigated the synergies with EM observations. Both authors interpreted the results, studied the implications and wrote the paper.

Corresponding authors

Correspondence to Nicola Tamanini or Camilla Danielski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Astronomy thanks Jonathan Gair and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tamanini, N., Danielski, C. The gravitational-wave detection of exoplanets orbiting white dwarf binaries using LISA. Nat Astron 3, 858–866 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing