Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Migration of D-type asteroids from the outer Solar System inferred from carbonate in meteorites


Recent dynamical models of Solar System evolution and isotope studies of rock-forming elements in meteorites have suggested that volatile-rich asteroids formed in the outer Solar System beyond Jupiter’s orbit, despite being currently located in the main asteroid belt1,2,3,4. The ambient temperature under which asteroids formed is a crucial diagnostic to pinpoint the original location of asteroids and is potentially determined by the abundance of volatiles they contain. In particular, abundances and 13C/12C ratios of carbonates in meteorites record the abundances of carbon-bearing volatile species in their parent asteroids. However, the sources of carbon for these carbonates remain poorly understood5,6,7,8. Here we show that the Tagish Lake meteorite contains abundant carbonates with consistently high 13C/12C ratios. The high abundance of 13C-rich carbonates in Tagish Lake excludes organic matter as their main carbon source5,9. Therefore, the Tagish Lake parent body, presumably a D-type asteroid10, must have accreted a large amount of 13C-rich CO2 ice. The estimated 13C/12C and CO2/H2O ratios of ice in Tagish Lake are similar to those of cometary ice11,12. Thus, we infer that at least some D-type asteroids formed in the cold outer Solar System and were subsequently transported into the inner Solar System owing to an orbital instability of the giant planets1,3.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: C and O isotopic ratios of Ca-carbonate grains in the CM chondrites Nogoya and LAP 031166.
Fig. 2: δ13CVPDB values of calcite and dolomite grains in Tagish Lake.
Fig. 3: Histogram of the CO2/H2O mole ratios of ice in CM chondrites and comets.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Levison, H. F. et al. Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature 460, 364–366 (2009).

    ADS  Article  Google Scholar 

  2. 2.

    Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011).

    ADS  Article  Google Scholar 

  3. 3.

    Vokrouhlický, D., Bottke, W. F. & Nesvorný, D. Capture of trans-Neptunian planetesimals in the main asteroid belt. Astron. J. 152, 39 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    Kruijer, T. S., Burkhardt, C., Budde, G. & Kleine, T. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl Acad. Sci. USA 114, 6712–6716 (2017).

    ADS  Google Scholar 

  5. 5.

    Alexander, C. M. O.’D., Bowden, R., Fogel, M. L. & Howard, K. T. Carbonate abundances and isotopic compositions in chondrites. Meteorit. Planet. Sci. 50, 810–833 (2015).

    ADS  Article  Google Scholar 

  6. 6.

    Fujiya, W. et al. Comprehensive study of carbon and oxygen isotopic compositions, trace element abundances, and cathodoluminescence intensities of calcite in the Murchison CM chondrite. Geochim. Cosmochim. Acta 161, 101–117 (2015).

    ADS  Article  Google Scholar 

  7. 7.

    Vacher, L. G., Marrocchi, Y., Villeneuve, J., Verdier-Paoletti, M. J. & Gounelle, M. Petrographic and C & O isotopic characteristics of the earliest stages of aqueous alteration of CM chondrites. Geochim. Cosmochim. Acta 213, 271–290 (2017).

    ADS  Article  Google Scholar 

  8. 8.

    Vacher, L. G., Marrocchi, Y., Villeneuve, J., Verdier-Paoletti, M. J. & Gounelle, M. Collisional and alteration history of the CM parent body. Geochim. Cosmochim. Acta 239, 213–234 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Cody, G. D. & Alexander, C. M. O.’D. NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups. Geochim. Cosmochim. Acta 69, 1085–1097 (2005).

    ADS  Article  Google Scholar 

  10. 10.

    Hiroi, T., Zolensky, M. E. & Pieters, C. M. The Tagish Lake meteorite: a possible sample from a D-type asteroid. Science 293, 2234–2236 (2001).

    ADS  Article  Google Scholar 

  11. 11.

    Ootsubo, T. AKARI near-infrared spectroscopic survey for CO2 in 18 comets. Astrophys. J. 752, 15 (2012).

    ADS  Article  Google Scholar 

  12. 12.

    Hässig, M. et al. Isotopic composition of CO2 in the coma of 67P/Churyumov–Gerasimenko measured with ROSINA/DFMS. Astron. Astrophys. 605, A50 (2017).

    Article  Google Scholar 

  13. 13.

    Brown, P. G. et al. The fall, recovery, orbit, and composition of the Tagish Lake meteorite: a new type of carbonaceous chondrite. Science 290, 320–325 (2000).

    ADS  Article  Google Scholar 

  14. 14.

    Zolensky, M. E. et al. Mineralogy of Tagish Lake: an ungrouped type 2 carbonaceous chondrite. Meteorit. Planet. Sci. 37, 737–761 (2002).

    ADS  Article  Google Scholar 

  15. 15.

    Mumma, M. J. & Charnley, S. B. The chemical composition of comets—emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49, 471–524 (2011).

    ADS  Article  Google Scholar 

  16. 16.

    Grady, M. M., Verchovsky, A. B., Franchi, I. A., Wright, I. P. & Pillinger, C. T. Light element geochemistry of the Tagish Lake CI2 chondrite: comparison with CI1 and CM2 meteorites. Meteorit. Planet. Sci. 37, 713–735 (2002).

    ADS  Article  Google Scholar 

  17. 17.

    Aponte, J. C., McLain, H. L., Dworkin, J. P. & Elsila, J. E. Aliphatic amines in Antarctic CR2, CM2, and CM1/2 carbonaceous chondrites. Geochim. Cosmochim. Acta 189, 296–311 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Alexander, C. M. O.’D. et al. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012).

    ADS  Article  Google Scholar 

  19. 19.

    Alexander, C. M. O.’D., Howard, K. T., Bowden, R. & Fogel, M. L. The classification of CM and CR chondrites using bulk H, C and N abundances and isotopic compositions. Geochim. Cosmochim. Acta 123, 244–260 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    Burbine, T. H. in Treatise on Geochemistry, Vol. 2: Meteorites and Cosmochemical Processes 2nd edn (ed. Davis, A. M.) 365–414 (Elsevier, 2014).

  21. 21.

    Fayolle, E. C., Öberg, K. I., Cuppen, H. M., Visser, R. & Linnartz, H. Laboratory H2O:CO2 ice desorption data: entrapment dependencies and its parameterization with an extended three-phase model. Astron. Astrophys. 529, A74 (2011).

    ADS  Article  Google Scholar 

  22. 22.

    Marley, M. S., Fortney, J. J., Hubickyj, O., Bodenheimer, P. & Lissauer, J. J. On the luminosity of young Jupiters. Astrophys. J. 655, 541–549 (2007).

    ADS  Article  Google Scholar 

  23. 23.

    Okuzumi, S., Momose, M., Shirono, S., Kobayashi, H. & Tanaka, H. Sintering-induced dust ring formation in protoplanetary disks: application to the HL Taudisk. Astrophys. J. 821, 82 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    DeMeo, F. E. & Carry, B. Solar System evolution from compositional mapping of the asteroid belt. Nature 505, 629–634 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Nakamura-Messenger, K., Messenger, S., Keller, L. P., Clemett, S. J. & Zolensky, M. E. Organic globules in the Tagish Lake meteorite: remnants of the protosolar disk. Science 314, 1439–1442 (2006).

    ADS  Article  Google Scholar 

  26. 26.

    Piani, L., Yurimoto, H. & Remusat, L. A dual origin for water in carbonaceous asteroids revealed by CM chondrites. Nat. Astron. 2, 317–323 (2018).

    ADS  Article  Google Scholar 

  27. 27.

    Hartogh, P. Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature 478, 218–220 (2011).

    ADS  Article  Google Scholar 

  28. 28.

    Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).

    ADS  Article  Google Scholar 

  29. 29.

    Marty, B. et al. Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission. Earth Planet. Sci. Lett. 441, 91–102 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Marty, B. et al. Xenon isotopes in 67P/Churyumov–Gerasimenko show that comets contributed to Earth’s atmosphere. Science 356, 1069–1072 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    Rubin, A. E., Trigo-Rodríguez, J. M., Huber, H. & Wasson, J. T. Progressive aqueous alteration of CM carbonaceous chondrites. Geochim. Cosmochim. Acta 71, 2361–2382 (2007).

    ADS  Article  Google Scholar 

  32. 32.

    Johnson, C. A. & Prinz, M. Carbonate compositions in CM and CI chondrites, and implications for aqueous alteration. Geochim. Cosmochim. Acta 57, 2843–2852 (1993).

    ADS  Article  Google Scholar 

  33. 33.

    Riciputi, L. R., McSween, H. Y. Jr, Johnson, C. A. & Prinz, M. Minor and trace element concentrations in carbonates of carbonaceous chondrites, and implications for the compositions of coexisting fluids. Geochim. Cosmochim. Acta 58, 1343–1351 (1994).

    ADS  Article  Google Scholar 

  34. 34.

    de Leuw, S., Rubin, A. E. & Wasson, J. T. Carbonates in CM chondrites: complex formational histories and comparison to carbonates in CI chondrites. Meteorit. Planet. Sci. 45, 513–530 (2010).

    ADS  Article  Google Scholar 

  35. 35.

    Lee, M. R., Lindgren, P. & Sofe, M. R. Aragonite, breunnerite, calcite and dolomite in the CM carbonaceous chondrites: high fidelity recorders of progressive parent body aqueous alteration. Geochim. Cosmochim. Acta 144, 126–156 (2014).

    ADS  Article  Google Scholar 

  36. 36.

    Tyra, M. A., Farquhar, J., Guan, Y. & Leshin, L. A. An oxygen isotope dichotomy in CM2 chondritic carbonates—a SIMS approach. Geochim. Cosmochim. Acta 77, 383–395 (2012).

    ADS  Article  Google Scholar 

  37. 37.

    Lee, M. R., Sofe, M. R., Lindgren, P., Starkey, N. A. & Franchi, I. A. The oxygen isotope evolution of parent body aqueous solutions as recorded by multiple carbonate generations in the Lonewolf Nunataks 94101 CM2 carbonaceous chondrite. Geochim. Cosmochim. Acta 121, 452–466 (2013).

    ADS  Article  Google Scholar 

  38. 38.

    Lindgren, P., Lee, M. R., Starkey, N. A. & Franchi, I. A. Fluid evolution in CM carbonaceous chondrites tracked through the oxygen isotopic compositions of carbonates. Geochim. Cosmochim. Acta 204, 240–251 (2017).

    ADS  Article  Google Scholar 

  39. 39.

    Izawa, M. R. M. et al. Variability, absorption features, and parent body searches in “spectrally featureless” meteorite reflectance spectra: case study—Tagish Lake. Icarus 254, 324–332 (2015).

    ADS  Article  Google Scholar 

  40. 40.

    Nakamura, T., Noguchi, T., Zolensky, M. E. & Tanaka, M. Mineralogy and noble-gas signatures of the carbonate-rich lithology of the Tagish Lake carbonaceous chondrite: evidence for an accretionary breccia. Earth Planet. Sci. Lett. 207, 83–101 (2003).

    ADS  Article  Google Scholar 

  41. 41.

    Brown, P. G., Revelle, D. O., Tagliaferri, E. & Hildebrand, A. R. An entry model for the Tagish Lake fireball using seismic, satellite and infrasound records. Meteorit. Planet. Sci. 37, 661–675 (2002).

    ADS  Article  Google Scholar 

  42. 42.

    Kozdon, R., Ushikubo, T., Kita, N. T., Spicuzza, M. & Valley, J. W. Intratest oxygen isotope variability in the planktonic foraminifer N. pachyderma: real vs. apparent vital effects by ion microprobe. Chem. Geol. 258, 327–337 (2009).

    ADS  Article  Google Scholar 

  43. 43.

    Kita, N. T., Ushikubo, T., Fu, B. & Valley, J. W. High precision SIMS oxygen isotope analysis and the effect of sample topography. Chem. Geol. 264, 43–57 (2009).

    ADS  Article  Google Scholar 

  44. 44.

    Tenner, T. J., Ushikubo, T., Kurahashi, E., Kita, N. T. & Nagahara, H. Oxygen isotope systematics of chondrule phenocrysts from the CO3.0 chondrite Yamato 81020: evidence for two distinct oxygen isotope reservoirs. Geochim. Cosmochim. Acta 102, 226–245 (2013).

    ADS  Article  Google Scholar 

  45. 45.

    Fujiya, W., Fukuda, K., Koike, M., Ishida, A. & Sano, Y. Oxygen and carbon isotopic ratios of carbonates in the Nogoya CM chondrite. In Proc. 47th Lunar and Planetary Science Conference 1712 (Lunar and Platenary Institute, 2016).

  46. 46.

    Shirai, K. et al. Minor and trace element incorporation into branching coral Acropora nobilis skeleton. Geochim. Cosmochim. Acta 72, 5386–5400 (2008).

    ADS  Article  Google Scholar 

  47. 47.

    Chan, Q. H. S., Zolensky, M. E., Bodnar, R. J., Farley, C. & Cheung, J. C. H. Investigation of organo-carbonate associations in carbonaceous chondrites by Raman spectroscopy. Geochim. Cosmochim. Acta 201, 392–409 (2017).

    ADS  Article  Google Scholar 

  48. 48.

    Benedix, G. K., Leshin, L. A., Farquhar, J., Jackson, T. & Thiemens, M. H. Carbonates in CM2 chondrites: constraints on alteration conditions from oxygen isotopic compositions and petrographic observations. Geochim. Cosmochim. Acta 67, 1577–1588 (2003).

    ADS  Article  Google Scholar 

  49. 49.

    Jenniskens, P. et al. Radar-enabled recovery of the Sutter’s Mill meteorite, a carbonaceous chondrite regolith breccia. Science 338, 1583–1587 (2012).

    ADS  Article  Google Scholar 

  50. 50.

    Vacher, L. G., Marrocchi, Y., Verdier-Paoletti, M. J., Villeneuve, J. & Gounelle, M. Inward radial mixing of interstellar water ices in the solar protoplanetary disk. Astrophys. J. 827, L1 (2016).

    ADS  Article  Google Scholar 

  51. 51.

    Verdier-Paoletti, M. J. et al. Oxygen isotope constraints on the alteration temperatures of CM chondrites. Earth Planet. Sci. Lett. 458, 273–1281 (2017).

    ADS  Article  Google Scholar 

  52. 52.

    Tyra, M., Brearley, A. & Guan, Y. Episodic carbonate precipitation in the CM chondrite ALH 84049: an ion microprobe analysis of O and C isotopes. Geochim. Cosmochim. Acta 175, 195–207 (2016).

    ADS  Article  Google Scholar 

  53. 53.

    Fujiya, W. Oxygen isotopic ratios of primordial water in carbonaceous chondrites. Earth Planet. Sci. Lett. 481, 264–272 (2018).

    ADS  Article  Google Scholar 

  54. 54.

    Clayton, R. N. & Mayeda, T. K. The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth Planet. Sci. Lett. 67, 151–161 (1984).

    ADS  Article  Google Scholar 

  55. 55.

    Alexander, C. M. O.’D., Fogel, M., Yabuta, H. & Cody, G. D. The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter. Geochim. Cosmochim. Acta 71, 4380–4403 (2007).

    ADS  Article  Google Scholar 

  56. 56.

    Herd, C. D. K. et al. Origin and evolution of prebiotic organic matter as inferred from the Tagish Lake meteorites. Science 332, 1304–1307 (2011).

    ADS  Article  Google Scholar 

  57. 57.

    Yuen, G., Blair, N., Des Marais, D. J. & Chang, S. Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite. Nature 307, 252–254 (1984).

    ADS  Article  Google Scholar 

  58. 58.

    Sephton, M. A. & Gilmour, I. Compound-specific isotope analysis of the organic constituents in carbonaceous chondrites. Mass Spectrom. Rev. 20, 111–120 (2001).

    ADS  Article  Google Scholar 

Download references


We thank N. Takahata, T. Kagoshima, A. Ishida and E. Gröner for assistance with the ion probe analyses. This work was supported by JSPS KAKENHI grant numbers 16K17838, 17K18814 and 18H04454, and UK Science and Technology Facilities Council grant ST/N000846/1.

Author information




W.F. designed this work, W.F., P.H., T.U., K.F., M.K. and Y.S. performed the ion probe analyses, P.L. and M.R.L. carried out the petrologic and mineralogical observations of the samples, K.S. prepared the standard materials for the ion probe analyses, and all authors participated in discussion and preparation of the manuscript.

Corresponding author

Correspondence to W. Fujiya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Astronomy thanks Laurette Piani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fujiya, W., Hoppe, P., Ushikubo, T. et al. Migration of D-type asteroids from the outer Solar System inferred from carbonate in meteorites. Nat Astron 3, 910–915 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing