Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A high-mass planetary nebula in a Galactic open cluster

Abstract

Planetary nebulae are the ionized ejected envelopes surrounding the remnant cores of dying stars. Theory predicts that main-sequence stars of one to about eight solar masses may eventually form planetary nebulae. Until now, this has not been confirmed at the higher end of the mass range. Here we report that the planetary nebula BMP J1613-5406 is associated with the Galactic star cluster NGC 6067. Stars evolving off the main sequence of this cluster have a mass of around five solar masses. Our confidence in the association between the planetary nebula and the cluster comes from their tightly consistent radial velocities in a sightline with a steep velocity–distance gradient, common distances, and reddening and location of the planetary nebula within the cluster boundary. This is an unprecedented example of a planetary nebula whose progenitor star mass approaches the theoretical lower limit of core-collapse supernova formation. This finding provides observational evidence supporting theoretical predictions that stars of five solar masses and more can form planetary nebulae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: 30 arcmin × 30 arcmin images of NGC6067 and BMP1613-5406.
Fig. 2: The summed, red 3.9-m AAT SPIRAL Integral Field Unit one-dimensional spectrum.
Fig. 3: A VPHAS + combined u + g + r multi-band ‘RGB’ colour image centred on the planetary nebula’s central star candidate.
Fig. 4: A current plot from cluster white dwarfs for the latest IFMR estimates and semi-empirical ‘PARSEC’ fit8 together with our estimated point for BMP1613-5406 plotted as a red circle.

Similar content being viewed by others

Data availability

Our XSHOOTER data can be accessed from the ESO Science Archive Spectral Data Products (http://archive.eso.org/wdb/wdb/adp/phase3_spectral/form). The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

SHS data can be accessed from: http://www-wfau.roe.ac.uk/sss/halpha/.

VPHAS + data can be found at: http://www.vphasplus.org/.

References

  1. Iben, I. Jr. Planetary nebulae and their central stars—origin and evolution. Phys. Rep. 250, 2–94 (1995).

    Article  ADS  Google Scholar 

  2. Maciel, W. J., Costa, R. D. D., Dopita, M. & Sutherland, R. in Planetary Nebulae: Their Evolution and Role in the Universe Vol. 209 (ed. Kwok, S.) 551 (Astronomical Society of the Pacific, 2003).

  3. De Marco, O. The origin and shaping of planetary nebulae: putting the binary hypothesis to the test. Publ. Astron. Soc. Pac. 121, 316 (2009).

    Article  ADS  Google Scholar 

  4. Dopita, M. A. & Meatheringham, S. J. The evolutionary sequence of planetary nebulae. Astrophys. J. 357, 140–148 (1990).

    Article  ADS  Google Scholar 

  5. Collaboration, G. et al. The Gaia mission. Astron. Astrophys. 595, 1–36 (2016).

    Article  Google Scholar 

  6. Karakas, A. I. & Lugaro, M. Stellar yields from metal-rich asymptotic giant branch models. Astrophys. J. 825, 22 (2016).

    Article  Google Scholar 

  7. Miller Bertolami, M. M. New models for the evolution of post-asymptotic giant branch stars and central stars of planetary nebulae. Astron. Astrophys. 588, 1–21 (2016).

    Article  Google Scholar 

  8. Cummings, J. D., Kalirai, J. S., Tremblay, P.-E., Ramirez-Ruiz, E. & Choi, J. The white dwarf initial–final mass relation for progenitor stars from 0.85 to 7.5M . Astrophys. J. 866, 1–14 (2018).

    Article  ADS  Google Scholar 

  9. Jacoby, G. H., Morse, J. A., Fullton, L. K., Kwitter, K. B. & Henry, R. B. C. Planetary nebulae in the globular cluster PAL 6 and NGC 6441. Astron. J. 114, 2611 (1997).

    Article  ADS  Google Scholar 

  10. Parker, Q. A. et al. PHR 1315-6555: a bipolar planetary nebula in the compact Hyades-age open cluster ESO 96-SC04. Mon. Not. R. Astron. Soc. 413, 1835–1844 (2011).

    Article  ADS  Google Scholar 

  11. Parker, Q. A. et al. The AAO/UKST SuperCOSMOS Hα survey. Mon. Not. R. Astron. Soc. 362, 689–710 (2005).

    Article  ADS  Google Scholar 

  12. Parker, Q. A., Bojičić, I. S. & Frew, D. J. HASH: the Hong Kong/AAO/Strasbourg Hα planetary nebula database. J. Phys. Conf. Ser. 728, 032008 (2016).

  13. Frew, D. J., Bojičić, I. S. & Parker, Q. A. A catalogue of integrated Hα fluxes for 1258 Galactic planetary nebulae. Mon. Not. R. Astron. Soc. 431, 2–26 (2013).

    Article  ADS  Google Scholar 

  14. Frew, D. J. et al. Flux calibration of the AAO/UKST SuperCOSMOS Hα Survey. Mon. Not. R. Astron. Soc. 440, 1080–1094 (2014).

    Article  ADS  Google Scholar 

  15. Majaess, D. et al. Anchors for the cosmic distance scale: the Cepheid QZ Normae in the open cluster NGC 6067. Astrophys. Space Sci. 347, 61–70 (2013).

    Article  ADS  Google Scholar 

  16. Moni Bidin, C. et al. Investigating potential planetary nebula/cluster pairs. Astron. Astrophys. 561, 1–14 (2014).

    Article  Google Scholar 

  17. Alonso-Santiago, J. et al. NGC 6067: a young and massive open cluster with high metallicity. Mon. Not. R. Astron. Soc. 469, 1330–1353 (2017).

    Article  ADS  Google Scholar 

  18. Mermilliod, J. C. Comparative studies of young open clusters. III—Empirical isochronous curves and the zero age main sequence. Astron. Astrophys. 97, 235–244 (1981).

    ADS  Google Scholar 

  19. Silaj, J., Jones, C. E., Sigut, T. A. A. & Tycner, C. The Hα profiles of Be shell stars. Astrophys. J. 795, 1–12 (2014).

    Article  Google Scholar 

  20. Girardi, L., Bressan, A., Bertelli, G. & Chiosi, C. Evolutionary tracks and isochrones for low- and intermediate-mass stars: from 0.15 to 7 M , and from Z = 0.0004 to 0.03. Astron. Astrophys. Suppl. Ser. 141, 371–383 (2000).

  21. Bressan, A. et al. PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127–145 (2012).

    Article  ADS  Google Scholar 

  22. Marigo, P. et al. A new generation of PARSEC-COLIBRI stellar isochrones including the TP-AGB phase. Astrophys. J. 835, 1–19 (2017).

    Article  ADS  Google Scholar 

  23. Mathieu, R. D. in Stellar Clusters and Associations: Convection, Rotation, and Dynamos Vol. 198 (eds Pallavicini, R., Micela, G. & Sciortino, S.) 517 (Astronomical Society of the Pacific, 2000).

  24. Frew, D. J., Parker, Q. A. & Bojičić, I. S. The Hα surface brightness-radius relation: a robust statistical distance indicator for planetary nebulae. Mon. Not. R. Astron. Soc. 455, 1459–1488 (2016).

    Article  ADS  Google Scholar 

  25. Savage, B. D. & Mathis, J. S. Observed properties of interstellar dust. Annu. Rev. Astron. Astrophys. 17, 73–111 (1979).

    Article  ADS  Google Scholar 

  26. Wesson, R., Stock, D. J. & Scicluna, P. Understanding and reducing statistical uncertainties in nebular abundance determinations. Mon. Not. R. Astron. Soc. 422, 3516–3526 (2012).

    Article  ADS  Google Scholar 

  27. Chu, Y.-H., Kwitter, K. B., Kaler, J. B. & Jacoby, G. H. The relation between radius and expansion velocity in planetary nebulae. Publ. Astron. Soc. Pac. 96, 598–602 (1984).

    Article  ADS  Google Scholar 

  28. Maciel, W. J., Costa, R. D. D. & Idiart, T. E. P. Age distribution of the central stars of Galactic disk planetary nebulae. Astron. Astrophys. 512, 1–7 (2010).

    Article  Google Scholar 

  29. Pottasch, S. R. Local space density and formation rate of planetary nebulae. Astron. Astrophys. 307, 561–578 (1996).

    ADS  Google Scholar 

  30. Reid, W. A. & Parker, Q. A. An evaluation of the excitation-class parameter for the central stars of planetary nebulae. Publ. Astron. Soc. Aust. 27, 187–198 (2010).

    Article  ADS  Google Scholar 

  31. Kaler, J. B. & Jacoby, G. H. Central star temperatures of optically thick planetary nebulae and a distance-independent test of dredge-up theory. Astrophys. J. 345, 871–880 (1989).

    Article  ADS  Google Scholar 

  32. Weston, S., Napiwotzki, R. & Sale, S. Central stars of planetary nebulae in SDSS and IPHAS. J. Phys. Conf. Ser. 172, 012033 (2009).

  33. Miszalski, B. et al. MASH-II: more planetary nebulae from the AAO/UKST Hα survey. Mon. Not. R. Astron. Soc. 384, 525–534 (2008).

    Article  ADS  Google Scholar 

  34. Drew, J. E. et al. The VST photometric Hα survey of the southern Galactic plane and bulge (VPHAS+). Mon. Not. R. Astron. Soc. 440, 2036–2058 (2014).

    Article  ADS  Google Scholar 

  35. Stetson, P. B. DAOPHOT—a computer program for crowded-field stellar photometry. Publ. Astron. Soc. Pac. 99, 191–222 (1987).

    Article  ADS  Google Scholar 

  36. Barker, H. et al. The binary fraction of planetary nebula central stars—III. The promise of VPHAS+. Mon. Not. R. Astron. Soc. 475, 4504–4523 (2018).

    Article  ADS  Google Scholar 

  37. Conti, P. S. & Alschuler, W. R. Spectroscopic studies of O-type stars. I. Classification and absolute magnitudes. Astrophys. J. 170, 325 (1971).

    Article  ADS  Google Scholar 

  38. Peimbert, M. & Torres-Peimbert, S. in Planetary Nebulae Vol. 103 (ed. Flower, D. R.) 233−241 (D. Reidel, 1983).

  39. Karakas, A. I. Updated stellar yields from asymptotic giant branch models. Mon. Not. R. Astron. Soc. 403, 1413–1425 (2010).

    Article  ADS  Google Scholar 

  40. Moreno-Ibáñez, M., Villaver, E., Shaw, R. A. & Stanghellini, L. Compact planetary nebulae in the Galactic disk: analysis of the central stars. Astron. Astrophys. 593, 1–11 (2016).

    Article  Google Scholar 

  41. Fragkou, V., Parker, Q. A., Zijlstra, A., Shaw, R. & Lykou, F. The central star of planetary nebula PHR 1315 - 6555 and its host Galactic open cluster AL 1. Mon. Not. R. Astron. Soc. 484, 3078–3092 (2019).

    ADS  Google Scholar 

  42. AAO Software Team 2dfdr: Data Reduction Software 2015ascl.soft05015A (Astrophysics Source Code Library, 2015); https://www.aao.gov.au/science/software/2dfdr

  43. Modigliani, A.et al. in Observatory Operations: Strategies, Processes and Systems III Vol. 7737 (eds Silva, D. R., Peck, A. B. & Soifer, B. T.) 1–12 (SPIE, 2010).

  44. Crawford, S. M. et al. in Ground-based and Airborne Instrumentation for Astronomy III Vol. 7735 (eds McLean, I. S., Ramsay, S. K. & Takami, H.) 1–7 (SPIE, 2016).

  45. Netopil, M., Paunzen, E., Heiter, U. & Soubiran, C. On the metallicity of open clusters. III. Homogenised sample. Astron. Astrophys. 585, 1–17 (2016).

    Article  Google Scholar 

  46. Kharchenko, N. V., Piskunov, A. E., Schilbach, E., Röser, S. & Scholz, R.-D. Global survey of star clusters in the Milky Way. II. The catalogue of basic parameters. Astron. Astrophys. 558, 1–8 (2013).

    Article  Google Scholar 

  47. Turner, D. G. The PL calibration for Milky Way Cepheids and its implications for the distance scale. Astrophys. Space Sci. 326, 219–231 (2010).

    Article  ADS  Google Scholar 

  48. Mermilliod, J. C., Mayor, M. & Udry, S. Red giants in open clusters. XIV. Mean radial velocities for 1309 stars and 166 open clusters. Astron. Astrophys. 485, 303–314 (2008).

    Article  ADS  Google Scholar 

  49. Piskunov, A. E., Schilbach, E., Kharchenko, N. V., Röser, S. & Scholz, R.-D. Tidal radii and masses of open clusters. Astron. Astrophys. 477, 165–172 (2008).

    Article  ADS  Google Scholar 

  50. An, D., Terndrup, D. M. & Pinsonneault, M. H. The distances to open clusters from main-sequence fitting. IV. Galactic Cepheids, the LMC, and the local distance scale. Astrophys. J. 671, 1640–1668 (2007).

    Article  ADS  Google Scholar 

  51. Mermilliod, J. C., Mayor, M. & Burki, G. Membership of Cepheids and red giants in 8 open clusters—NGC 129, 6067, 6087, 6649, 6664, IC 4725, LY 6, RU 79. Astron. Astrophys. Suppl. Ser. 70, 389–407 (1987).

    ADS  Google Scholar 

  52. Coulson, I. M. & Caldwell, J. A. R. The Cepheid HD 144972 and the problematic distance to the open cluster NGC 6067. Mon. Not. R. Astron. Soc. 216, 671–678 (1985).

    Article  ADS  Google Scholar 

  53. Walker, A. & Coulson, I. M. CCD photometry of galactic clusters containing Cepheid variables. Paper 3: Photometry and identification charts for NGC 6067. South Afr. Astron. Obs. Circ. 9, 97–110 (1985).

    ADS  Google Scholar 

  54. Walker, A. R. CCD photometry of galactic clusters containing Cepheid variables. II—NGC 6067. Mon. Not. R. Astron. Soc. 214, 45–53 (1985).

    Article  ADS  Google Scholar 

  55. Mermilliod, J. C. Comparative studies of young open clusters. Part 2. An atlas of composite colour-magnitude diagrams. Astron. Astrophys. Suppl. Ser. 44, 467 (1981).

    ADS  Google Scholar 

  56. Thackeray, A. D., Wesselink, A. J. & Harding, G. A. The cluster NGC 6067. Mon. Not. R. Astron. Soc. 124, 445 (1962).

    Article  ADS  Google Scholar 

  57. Trumpler, R. J. Preliminary results on the distances, dimensions and space distribution of open star clusters. Lick Obs. Bull. 14, 154–188 (1930).

    ADS  Google Scholar 

Download references

Acknowledgements

Part of this work is from data obtained from the ESO Science Archive Facility under request number 336270. Some reported observations were obtained with the SALT. Q.A.P. and V.F. thank the University of Hong Kong (HKU) for travel support for the SALT observations and the Hong Kong Research Grants Council for General Research Fund (GRF) research support under grants 17326116 and 17300417. V.F. thanks HKU for her PhD scholarship. We thank D. Frew for input to the XSHOOTER proposal and for early project work (we have been unable to get a reply from him to agree to the co-authorship that he deserves).

Author information

Authors and Affiliations

Authors

Contributions

V.F. undertook the data reduction and analysis for the planetary nebula and cluster and led the writing of the paper. Q.A.P. co-discovered the planetary nebula, identified it as a possible cluster member, obtained much of the follow-up data on a variety of telescopes, including SALT, and co-wrote the paper. A.A.Z. provided scientific input and checked the paper. L.C. helped to facilitate SALT observations via Director’s Discretionary Time. H.B. helped with the VPHAS+ photometry.

Corresponding author

Correspondence to Q. A. Parker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fragkou, V., Parker, Q.A., Zijlstra, A.A. et al. A high-mass planetary nebula in a Galactic open cluster. Nat Astron 3, 851–857 (2019). https://doi.org/10.1038/s41550-019-0796-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-019-0796-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing