Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multi-filament gas inflows fuelling young star-forming galaxies

Abstract

Theory suggests that there are two primary modes of accretion through which dark-matter halos acquire the gas to form and fuel galaxies: hot- and cold-flow accretion. In cold-flow accretion, gas streams along cosmic web filaments to the centre of the halo, allowing for the efficient delivery of star-forming fuel. Recently, two quasar-illuminated H i Lyman ɑ (Lyα)-emitting objects were reported to have properties of cold, rotating structures1,2. However, the spatial and spectral resolution available was insufficient to constrain the radial flows associated with connecting filaments. With the Keck Cosmic Web Imager (KCWI)3, we now have eight times the spatial resolution, permitting the detection of these inspiralling flows. To detect these inflows, we introduce a suite of models that incorporate zonal radial flows, demonstrate their performance on a numerical simulation that exhibits cold-flow accretion, and show that they are an excellent match to KCWI velocity maps of two Lyα emitters observed around high-redshift quasars. These multi-filament inflow models kinematically isolate zones of radial inflow that correspond to extended filamentary emission. The derived gas flux and inflow path is sufficient to fuel the inferred central galaxy star-formation rate and angular momentum. Thus, our kinematic emission maps provide strong evidence that the inflow of gas from the cosmic web is building galaxies at the peak of star formation.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Surface density and velocity maps of VELA07 simulation in face-on projection.
Fig. 2: Narrow-band image, mean velocity map and velocity dispersion maps simulation and data.
Fig. 3: Velocity maps simulation and data compared to MFI models.
Fig. 4: Face-on reconstruction of column density, radial velocity and radial mass flux for simulated and observed objects.

Data availability

KCWI data on CSO38 and UM287 is publicly available. Data on UM287 will be available 18 months after the observation in Oct 2017. The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

KCWI pipeline code is available on the W. M. Keck Observatory website.

References

  1. 1.

    Martin, D. C. et al. A giant protogalactic disk linked to the cosmic web. Nature 524, 192 (2015).

    ADS  Article  Google Scholar 

  2. 2.

    Martin, D. C. et al. A newly forming cold flow protogalactic disk, a signature of cold accretion from the cosmic web. Astrophys. J. 824, L5 (2016).

    ADS  Article  Google Scholar 

  3. 3.

    Morrissey, P. et al. The Keck Cosmic Web Imager Integral Field Spectrograph. Astrophys. J. 864, 93 (2018).

    ADS  Article  Google Scholar 

  4. 4.

    Danovich, M. et al. Four phases of angular-momentum buildup in high- z galaxies: from cosmic-web streams through an extended ring to disc and bulge. Mon. Not. R. Astron. Soc. 449, 2087–2111 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Danovich, M., Dekel, A., Hahn, O. & Teyssier, R. Coplanar streams, pancakes and angular-momentum exchange in high- z disc galaxies. Astrophys. J. 422, 1732–1749 (2012).

    ADS  Google Scholar 

  6. 6.

    Stewart, K. et al. Orbiting circumgalactic gas as a signature of cosmological accretion. Astrophys. J. 738, 39 (2011).

    ADS  Article  Google Scholar 

  7. 7.

    Stewart, K. R. et al. Angular momentum acquisition in galaxy halos. Astrophys. J. 769, 74 (2013).

    ADS  Article  Google Scholar 

  8. 8.

    Arrigoni-Battaia, F. et al. Inspiraling halo accretion mapped in Lyα emission around a z 3 quasar. Mon. Not. R. Astron. Soc. 473, 3907–3940 (2017).

    ADS  Article  Google Scholar 

  9. 9.

    Vanzella, E. et al. Illuminating gas inflows/outflows in the MUSE deepest fields: Lyɑ nebulae around forming galaxies at z 3.3.Mon. Not. R. Astron. Soc. 465, 3803–3816 (2017).

    ADS  Article  Google Scholar 

  10. 10.

    Navarro, J. F., Frenk, C. S. & White, S. D. M. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997).

    ADS  Article  Google Scholar 

  11. 11.

    Zolotov, A. et al. Compaction and quenching of high-z galaxies in cosmological simulations: blue and red nuggets. Mon. Not. R. Astron. Soc. 450, 2327–2353 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    Ceverino, D. et al. Radiative feedback and the low efficiency of galaxy formation in low-mass haloes at high redshift. Mon. Not. R. Astron. Soc. 442, 1545–1559 (2014).

    ADS  Article  Google Scholar 

  13. 13.

    Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    Cantalupo, S., Arrigoni-Battaia, F., Prochaska, J. X., Hennawi, J. F. & Madau, P. A cosmic web filament revealed in Lyman-α emission around a luminous high-redshift quasar. Nature 506, 63–66 (2014).

    ADS  Article  Google Scholar 

  15. 15.

    Trainor, R. & Steidel, C. C. Constraints on hyperluminous QSO lifetimes via fluorescent Lyα emitters at z 2.7. Astrophys. J. 775, L3 (2013).

    ADS  Article  Google Scholar 

  16. 16.

    Trainor, R. F. & Steidel, C. C. The halo masses and galaxy environments of hyperluminous QSOs at z 2.7 in the Keck Baryonic Structure Survey. Astrophys. J. 752, 39–51 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    Martin, D. C. et al. IGM emission observations with the Cosmic Web Imager: I. The circum-QSO medium of QSO 1549+19, and evidence for a filamentary gas inflow. Astrophys. J. 786, 106–131 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    Martin, D. C. et al. IGM emission observations with the Cosmic Web Imager: II. Discovery of extended, kinematically-linked emission around SSA22 Lymanɑ Blob 2. Astrophys. J. 786, 107–135 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    Dekel, A. et al. Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457, 451–454 (2009).

    ADS  Article  Google Scholar 

  20. 20.

    Dekel, A. & Birnboim, Y. Galaxy bimodality due to cold flows and shock heating. Mon. Not. R. Astron. Soc. 368, 2–20 (2006).

    ADS  Article  Google Scholar 

  21. 21.

    Ceverino, D. & Klypin, A. The role of stellar feedback in the formation of galaxies. Astrophys. J. 695, 292–309 (2009).

    ADS  Article  Google Scholar 

  22. 22.

    Kravtsov, A. V. On the origin of the global Schmidt law of star formation. Astrophys. J. 590, L1–L4 (2003).

    ADS  Article  Google Scholar 

  23. 23.

    Kravtsov, A. V., Klypin, A. A. & Khokhlov, A. M. Adaptive Refinement Tree: a new high‐resolution N‐body code for cosmological simulations. Astrophys. J. Suppl. 111, 73–94 (1997).

    ADS  Article  Google Scholar 

  24. 24.

    Kennicutt, R. C. J. The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998).

    ADS  Article  Google Scholar 

  25. 25.

    Dekel, A. & Krumholz, M. R. Steady outflows in giant clumps of high-z disc galaxies during migration and growth by accretion. Mon. Not. R. Astron. Soc. 432, 455–467 (2013).

    ADS  Article  Google Scholar 

  26. 26.

    Komatsu, E. et al. Five-year Wilkinson microwave anisotropy probeobservations: cosmological interpretation. Astrophys. J. Suppl. 180, 330–376 (2009).

    ADS  Article  Google Scholar 

  27. 27.

    Ceverino, D., Dekel, A. & Bournaud, F. High-redshift clumpy discs and bulges in cosmological simulations. Mon. Not. R. Astron. Soc. 404, 2151–2169 (2010).

    ADS  Google Scholar 

  28. 28.

    Neufeld, D. A. The transfer of resonance-line radiation in static astrophysical media. Astrophys. J. 350, 216 (1990).

    ADS  Article  Google Scholar 

  29. 29.

    Verhamme, A., Schaerer, D. & Maselli, A. 3D Lyα radiation transfer. Astron. Astrophys. 460, 397–413 (2006).

    ADS  Article  Google Scholar 

  30. 30.

    Zheng, Z. & Miralda-Escudé, J. Monte Carlo simulation of Lyα scattering and application to damped Lyα systems. Astrophys. J. 578, 33–42 (2002).

    ADS  Article  Google Scholar 

  31. 31.

    Ferland, G. J., Korista, K. T., Verner, D. A., Ferguson, J. W., Kingdon, J. B. & Verner, E. M. CLOUDY 90: numerical simulation of plasmas and their spectra. Publ. Astron. Soc. Pac. 110, 761–778 (1998).

    ADS  Article  Google Scholar 

  32. 32.

    Goerdt, T. & Ceverino, D. Inflow velocities of cold flows streaming into massive galaxies at high redshifts. Mon. Not. R. Astron. Soc. 450, 3359–3370 (2015).

    ADS  Article  Google Scholar 

  33. 33.

    Cen, R. Evolution of cold streams and the emergence of the Hubble sequence. Astrophys. J. 789, L21 (2014).

    ADS  Article  Google Scholar 

  34. 34.

    Powell, M. J. D. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7, 155–162 (1964).

    MathSciNet  Article  Google Scholar 

  35. 35.

    Schwarz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978).

    MathSciNet  Article  Google Scholar 

  36. 36.

    Wisotzki, L. et al. Extended Lyman α haloes around individual high-redshift galaxies revealed by MUSE. Astron. Astrophys. 587, A98 (2016).

    Article  Google Scholar 

  37. 37.

    Heckman, T. M., Armus, L. & Miley, G. K. On the nature and implications of starburst-driven galactic superwinds. Astrophys. J. Suppl. 74, 833–868 (1990).

    ADS  Article  Google Scholar 

  38. 38.

    Steidel, C. C. et al. Diffuse Lyα emitting halos: a generic property of high-redshift star-forming galaxies. Astrophys. J. 736, 160–177 (2011).

    ADS  Article  Google Scholar 

  39. 39.

    Ocvirk, P., Pichon, C. & Teyssier, R. Bimodal gas accretion in the Horizon-Mare Nostrum galaxy formation simulation. Mon. Not. R. Astron. Soc 390, 1326–1338 (2008).

    ADS  Google Scholar 

  40. 40.

    Hibbard, J. E., van der Hulst, J. M., Barnes, J. E. & Rich, R. M. High-resolution H [CSC]i[/CSC] mapping of NGC 4038/39 (“The Antennae”) and its tidal dwarf galaxy candidates. Astron. J. 122, 2969–2992 (2001).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation, the W. M. Keck Observatory and the California Institute of Technology. The VELA simulations were performed at NASA Advanced Supercomputing at NASA Ames Research Center. D.C. is funded by the ERC Advanced Grant, STARLIGHT: Formation of the First Stars (project number 339177).

Author information

Affiliations

Authors

Contributions

D.C.M. is the Principal Investigator of KCWI, performed the analysis of the simulated galaxy, data and MFI models, and was principal author on the paper. D.O. and D.C.M. led the observations of UM287 and CSO 38. D.O. and M.M. reduced the data. D.O., M.M. and E.H. contributed to the paper writing. P.M., M.M., D.C.M., J.D.N., D.O. and A.M. designed, constructed and operated KCWI. J.D.N., M.M. and D.C.M. developed the KCWI data pipeline and produced the final data cubes. D.C. developed the VELA simulations. A.D. and S.L. provided the simulated galaxy VELA07 and contributed to the writing of the paper. D.C. and J.P. contributed the cosmological simulation. C.S., R.T., S.C. and J.X.P. contributed to the development of KCWI, to Keck data for the two protogalaxies, and to the editing of the paper. L.R. made major contributions to KCWI commissioning and participated in the observations of CSO 38.

Corresponding author

Correspondence to D. Christopher Martin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figures 1–11, Supplementary Tables 1–8, Supplementary References 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martin, D.C., O’Sullivan, D., Matuszewski, M. et al. Multi-filament gas inflows fuelling young star-forming galaxies. Nat Astron 3, 822–831 (2019). https://doi.org/10.1038/s41550-019-0791-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing