Magnetic field morphology in interstellar clouds with the velocity gradient technique


Magnetic fields, while ubiquitous in many astrophysical environments, are challenging to measure observationally. Based on the properties of anisotropy of eddies in magnetized turbulence, the velocity gradient technique is a method synergistic to dust polarimetry that is capable of tracing plane-of-the-sky magnetic fields, measuring the magnetization of interstellar media and estimating the fraction of gravitational collapsing gas in molecular clouds using spectral line observations. Here, we apply this technique to five low-mass star-forming molecular clouds in the Gould Belt and compare the results to the magnetic field orientation obtained from polarized dust emission. We find that the estimates of magnetic field orientations and magnetization for both methods are statistically similar. We estimate the fraction of collapsing gas in the selected clouds. By using the velocity gradient technique, we also present the plane-of-the-sky magnetic field orientation and magnetization of the Smith Cloud, for which dust polarimetry data are unavailable.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The magnetic field morphology of Taurus obtained with the VGT using 13CO and the Planck polarimetry.
Fig. 2: The magnetic field morphology of molecular clouds L 1551, Perseus A, NGC 1333 and Serpens obtained with the VGT using 13CO and Planck polarimetry.
Fig. 3: The magnetic field morphology and magnetization of the Smith Cloud superimposed on a map of its total H i intensity.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author and other co-authors upon reasonable request.

Code availability

The code for the VGT algorithm is available at


  1. 1.

    Planck Collaboration Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds. Astron. Astrophys. 586, A138 (2016).

    Article  Google Scholar 

  2. 2.

    Larson, R. B. Turbulence and star formation in molecular clouds. Mon. Not. R. Astron. Soc. 194, 809–826 (1981).

    ADS  Article  Google Scholar 

  3. 3.

    McKee, C. F. & Tan, J. C. The formation of massive stars from turbulent cores. Astrophys. J. 585, 850–871 (2003).

    ADS  Article  Google Scholar 

  4. 4.

    Seifried, D. & Walch, S. The impact of turbulence and magnetic field orientation on star-forming filaments. Mon. Not. R. Astron. Soc. 452, 2410–2422 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Bromm, V., Coppi, P. S. & Larson, R. B. Forming the first stars in the Universe: the fragmentation of primordial gas. Astrophys. J. Lett. 527, L5–L8 (1999).

    ADS  Article  Google Scholar 

  6. 6.

    Hill, T. et al. Filaments and ridges in Vela c revealed by Herschel: from low-mass to high-mass star-forming sites. Astron. Astrophys. 533, A94 (2011).

    Article  Google Scholar 

  7. 7.

    Brandenburg, A. & Lazarian, A. Astrophysical hydromagnetic turbulence. Space Sci. Rev. 178, 163–200 (2013).

    ADS  Article  Google Scholar 

  8. 8.

    Andersson, B.-G., Lazarian, A. & Vaillancourt, J. E. Interstellar dust grain alignment. Annu. Rev. Astron. Astrophys. 53, 501–539 (2015).

    ADS  Article  Google Scholar 

  9. 9.

    Planck Collaboration Planck 2018 results. III. High Frequency Instrument data processing and frequency maps. Preprint at (2018).

  10. 10.

    Li, H.-B. et al. Self-similar fragmentation regulated by magnetic fields in a region forming massive stars. Nature 520, 518–521 (2015).

    ADS  Article  Google Scholar 

  11. 11.

    Lazarian, A. Magnetic fields via polarimetry: progress of grain alignment theory. J. Quant. Spectrosc. Radiat. Transf. 79, 881 (2003).

    ADS  Article  Google Scholar 

  12. 12.

    Lazarian, A. & Hoang, T. Subsonic mechanical alignment of irregular grains. Astrophys. J. 669, L77–L80 (2007).

    ADS  Article  Google Scholar 

  13. 13.

    Hoang, T., Cho, J. & Lazarian, A. Alignment of irregular grains by mechanical torques. Astrophys. J. 852, 129 (2018).

    ADS  Article  Google Scholar 

  14. 14.

    Davis, L. The strength of interstellar magnetic fields. Phys. Rev. 81, 890–891 (1951).

    ADS  Article  Google Scholar 

  15. 15.

    Chandrasekhar, S. & Fermi, E. Magnetic fields in spiral arms. Astrophys. J. 118, 113 (1953).

    ADS  Article  Google Scholar 

  16. 16.

    Crutcher, R. M., Wandelt, B., Heiles, C., Falgarone, E. & Troland, T. H. Magnetic fields in interstellar clouds from Zeeman observations: inference of total field strengths by Bayesian analysis. Astrophys. J. 725, 466–479 (2010).

    ADS  Article  Google Scholar 

  17. 17.

    Taylor, A. R., Stil, J. M. & Sunstrum, C. A rotation measure image of the sky. Astrophys. J. 702, 1230–1236 (2009).

    ADS  Article  Google Scholar 

  18. 18.

    González-Casanova, D. F. & Lazarian, A. Velocity gradients as a tracer for magnetic fields. Astrophys. J. 835, 41 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Yuen, K. H. & Lazarian, A. Tracing interstellar magnetic field using velocity gradient technique: application to atomic hydrogen data. Astrophys. J. 837, L24 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    Lazarian, A. & Yuen, K. H. Tracing magnetic fields with spectroscopic channel maps. Astrophys. J. 853, 96 (2018).

    ADS  Article  Google Scholar 

  21. 21.

    Yuen, K. H. et al. Statistical tracing of magnetic fields: comparing and improving the techniques. Astrophys. J. 865, 54 (2018).

    ADS  Article  Google Scholar 

  22. 22.

    Goldreich, P. & Sridhar, S. Toward a theory of interstellar turbulence. 2: strong Alfvénic turbulence. Astrophys. J. 438, 763–775 (1995).

    ADS  Article  Google Scholar 

  23. 23.

    Lazarian, A. & Vishniac, E. T. Reconnection in a weakly stochastic field. Astrophys. J. 517, 700–718 (1999).

    ADS  Article  Google Scholar 

  24. 24.

    Cho, J. & Vishniac, E. T. The anisotropy of magnetohydrodynamic Alfvénic turbulence. Astrophys. J. 539, 273–282 (2000).

    ADS  Article  Google Scholar 

  25. 25.

    Maron, J. & Goldreich, P. Simulations of incompressible magnetohydrodynamic turbulence. Astrophys. J. 554, 1175–1196 (2001).

    ADS  Article  Google Scholar 

  26. 26.

    Beresnyak, A. & Lazarian, A. Scaling laws and diffuse locality of balanced and imbalanced magnetohydrodynamic turbulence. Astrophys. J. Lett. 722, L110–L113 (2010).

    ADS  Article  Google Scholar 

  27. 27.

    Beresnyak, A. & Lazarian, A. in Magnetic Fields in Diffuse Media (eds Lazarian, A., de Gouveia Dal Pino, E. M. & Melioli, C.) 163–226 (Springer, 2015).

  28. 28.

    Hsieh, C.-h. et al. Tracing magnetic field morphology using the velocity gradient technique in the presence of CO self-absorption. Astrophys. J. 873, 16 (2019).

    ADS  Article  Google Scholar 

  29. 29.

    Lazarian, A. et al. Distribution of velocity gradient orientations: mapping magnetization with the velocity gradient technique. Astrophys. J. 865, 46 (2018).

    ADS  Article  Google Scholar 

  30. 30.

    Hu, Y., Yuen, K. H. & Lazarian, A. Improving the accuracy of magnetic field tracing by velocity gradients: principal component analysis. Mon. Not. R. Astron. Soc. 480, 1333–1339 (2018).

    ADS  Article  Google Scholar 

  31. 31.

    Ostriker, E. C., Stone, J. M. & Gammie, C. F. Density, velocity, and magnetic field structure in turbulent molecular cloud models. Astrophys. J. 546, 980–1005 (2001).

    ADS  Article  Google Scholar 

  32. 32.

    Xu, S. & Lazarian, A. Magnetohydrodynamic turbulence and turbulent dynamo in partially ionized plasma. New J. Phys. 19, 065005 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Smith, G. P. A peculiar feature at lII = 40°.5, bII = − 15°.0. Bull. Astron. Institutes Netherlands 17, 203 (1963).

    ADS  Google Scholar 

  34. 34.

    Hill, A. S., Mao, S. A., Benjamin, R. A., Lockman, F. J. & McClure-Griffiths, N. M. Magnetized gas in the Smith High Velocity Cloud. Astrophys. J. 777, 55 (2013).

    ADS  Article  Google Scholar 

  35. 35.

    Betti, S. K. et al. Constraining the magnetic field of the Smith High-Velocity Cloud using Faraday rotation. Astrophys. J. 871, 215 (2019).

    ADS  Article  Google Scholar 

  36. 36.

    Goldsmith, P. F. et al. Large-scale structure of the molecular gas in Taurus revealed by high linear dynamic range spectral line mapping. Astrophys. J. 680, 428–445 (2008).

    ADS  Article  Google Scholar 

  37. 37.

    Ridge, N. A. et al. The complete survey of star-forming regions: phase I data. Astrophys. J. 131, 2921–2933 (2006).

    Google Scholar 

  38. 38.

    Lin, S.-J. et al. The intrinsic abundance ratio and X-factor of CO isotopologues in L 1551 shielded from FUV photodissociation. Astrophys. J. 826, 193 (2016).

    ADS  Article  Google Scholar 

  39. 39.

    Bieging, J. H., Revelle, M. & Peters, W. L. The Arizona Radio Observatory CO mapping survey of galactic molecular clouds. IV. The NGC 1333 cloud in Perseus in CO J = 2−1 and 13CO J = 2−1. Astrophys. J. Suppl. Ser. 214, 7 (2014).

    ADS  Article  Google Scholar 

  40. 40.

    Burleigh, K. J., Bieging, J. H., Chromey, A., Kulesa, C. & Peters, W. L. The Arizona Radio Observatory CO mapping survey of galactic molecular clouds. III. The Serpens cloud in CO J = 2−1 and 13CO J = 2−1 emission. Astrophys. J. Suppl. Ser. 209, 39 (2013).

    ADS  Article  Google Scholar 

  41. 41.

    Lazarian, A. & Pogosyan, D. Velocity modification of H I power spectrum. Astrophys. J. 537, 720–748 (2000).

    ADS  Article  Google Scholar 

  42. 42.

    Cho, J. & Lazarian, A. Compressible magnetohydrodynamic turbulence: mode coupling, scaling relations, anisotropy, viscosity-damped regime and astrophysical implications. Mon. Not. R. Astron. Soc. 345, 325–339 (2003).

    ADS  Article  Google Scholar 

  43. 43.

    Yuen, K. H. & Lazarian, A. Tracing interstellar magnetic field using the velocity gradient technique in shock and self-gravitating media. Preprint at (2017).

  44. 44.

    Falceta-Gonçalves, D., Lazarian, A. & Kowal, G. Studies of regular and random magnetic fields in the ISM: statistics of polarization vectors and the Chandrasekhar-Fermi technique. Astrophys. J. 679, 537 (2008).

    ADS  Article  Google Scholar 

  45. 45.

    Zhang, Q., Wang, K., Lu, X. & Jiménez-Serra, I. Fragmentation of molecular clumps and formation of a protocluster. Astrophys. J. 804, 141 (2015).

    ADS  Article  Google Scholar 

  46. 46.

    Ballesteros-Paredes, J., Klessen, R. S., Mac Low, M.-M. & Vazquez-Semadeni, E. in Protostars and Planets V (eds Reipurth, B., Jewitt, D. & Keil, K.) 63–80 (Univ. Arizona Press, 2007).

  47. 47.

    Sugitani, K. et al. Near-infrared-imaging polarimetry toward Serpens South: revealing the importance of the magnetic field. Astrophys. J. 734, 63 (2011).

    ADS  Article  Google Scholar 

  48. 48.

    Bland-Hawthorn, J. et al. The Smith cloud: H i associated with the Sgr dwarf? Mon. Not. R. Astron. Soc. 299, 611–624 (1998).

    ADS  Article  Google Scholar 

  49. 49.

    Lockman, F. J., Benjamin, R. A., Heroux, A. J. & Langston, G. I. The Smith Cloud: a high-velocity cloud colliding with the Milky Way. Astrophys. J. Lett. 679, L21–L24 (2008).

    ADS  Article  Google Scholar 

  50. 50.

    Wakker, B. P. et al. Distances to galactic high-velocity clouds. I. Cohen Stream, Complex GCP, cloud g1. Astrophys. J. 672, 298–319 (2008).

    ADS  Article  Google Scholar 

  51. 51.

    Lazarian, A. & Pogosyan, D. Studying velocity turbulence from Doppler-broadened absorption lines: statistics of optical depth fluctuations. Astrophys. J. 686, 350–362 (2008).

    ADS  Article  Google Scholar 

  52. 52.

    Lazarian, A., Pogosyan, D. & Esquivel, A. Quest for H i turbulence statistics: new techniques. In Seeing Through the Dust: The Detection of H i and the Exploration of the ISM in Galaxies, Astronomical Society of the Pacific Conference Series (eds Taylor, A. R., Landecker, T. L. & Willis, A. G.) 276, 182 (2002).

  53. 53.

    Clark, S. E., Peek, J. E. G. & Miville-Deschênes, M. A. The physical nature of neutral hydrogen intensity structure. Preprint at (2019).

  54. 54.

    Yuen, K. H., Hu, Y., Lazarian, A. & Pogosyan, D. Comment on Clark et al. (2019) “The physical nature of neutral hydrogen intensity structure”. Preprint at (2019).

Download references


A.L. acknowledges the support of National Science Foundation (NSF) grants AST 1715754 and 1816234, and NASA grant NNX14AJ53G. The research of P.F.G. was carried out at the Jet Propulsion Laboratory, which is operated for NASA by the California Institute of Technology. We acknowledge M. Heyer for a number of valuable suggestions in improving our paper. We acknowledge the COordinated Molecular Probe Line Extinction Thermal Emission Survey of Star Forming Regions (COMPLETE) for providing a range of data for the Perseus region and the Arizona Radio Observatory for providing the data of the Serpens region and NGC 1333. The Green Bank Observatory is a facility of the NSF operated under a cooperative agreement by Associated Universities, Inc. This work is based on observations obtained with Planck (, an ESA science mission with instruments and contributions directly funded by the ESA Member States, NASA and Canada.

Author information




All authors discussed the results, commented on the manuscript and contributed to the writing of the manuscript. Y.H., K.H.Y. and A.L. conceived the project, Y.H., K.H.Y. and K.W.H. performed calculations, while Y.H., K.H.Y., V.L. and A.L. analysed the results and wrote the original manuscript. R.A.B. provided suggestions on how the VGT technique might be applied to the Smith Cloud. The data on the Taurus cloud were provided by P.F.G. and data on the Smith Cloud were provided by A.S.H. and F.J.L.

Corresponding author

Correspondence to Yue Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Astronomy thanks Andrea Bracco, Kate Pattle and Thomas H. Troland for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Table 1 and Supplementary References 1–18.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Yuen, K.H., Lazarian, V. et al. Magnetic field morphology in interstellar clouds with the velocity gradient technique. Nat Astron 3, 776–782 (2019).

Download citation

Further reading