Review Article | Published:

The origin of radio emission from radio-quiet active galactic nuclei

Abstract

The central nuclei of galaxies, where supermassive black holes (SMBHs) are thought to reside, can experience phases of activity when they become active galactic nuclei (AGNs). An AGN can eject winds and jets and produce radiation across the entire electromagnetic spectrum. The fraction of the bolometric emission in the radio spans a factor of approximately 105 across the different classes of AGNs. The weakest radio sources, radio-quiet (RQ) AGNs, are typically 1,000 times fainter than the radio-loud (RL) AGNs, and represent the majority of the AGN population. In RQ AGNs, the absence of luminous jets allows us to probe radio emission from a wide range of possible mechanisms: star formation, AGN-driven wind, free-free emission from photoionized gas, low-power jets and the innermost accretion disk coronal activity. All these mechanisms can now be probed with unprecedented precision and spatial resolution, owing to the current and forthcoming generation of highly sensitive radio arrays.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

All relevant data included in the paper are available through the corresponding cited publications or from the authors upon reasonable request.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Astronomy thanks Ann Kapinska and Andrea Merloni for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Rev. Mod. Phys. 56, 255–351 (1984).

  2. 2.

    Kellermann, K. I., Sramek, R., Schmidt, M., Shaffer, D. B. & Green, R. VLA observations of objects in the Palomar Bright Quasar Survey. Astron. J. 98, 1195–1207 (1989).

  3. 3.

    Terashima, Y. & Wilson, A. S. Chandra snapshot observations of low-luminosity active galactic nuclei with a compact radio source. Astrophys. J. 583, 145–158 (2003).

  4. 4.

    Ulvestad, J. S., Antonucci, R. R. J. & Barvainis, R. VLBA imaging of central engines in radio-quiet quasars. Astrophys. J. 621, 123–129 (2005).

  5. 5.

    Leipski, C., Falcke, H., Bennert, N. & Hüttemeister, S. The radio structure of radio-quiet quasars. Astron. Astrophys. 455, 161–172 (2006).

  6. 6.

    Padovani, P. et al. The VLA survey of Chandra Deep Field South. V. Evolution and luminosity functions of sub-millijansky radio sources and the issue of radio emission in radio-quiet active galactic nuclei. Astrophys. J. 740, 20 (2011).

  7. 7.

    Doi, A., Nakanishi, K., Nagai, H., Kohno, K. & Kameno, S. Millimeter radio continuum emissions as the activity of supermassive black holes in nearby early-type galaxies and low-luminosity active galactic nuclei. Astron. J. 142, 167 (2011).

  8. 8.

    Zakamska, N. L. et al. Star formation in quasar hosts and the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 455, 4191–4211 (2016).

  9. 9.

    Padovani, P. The faint radio sky: radio astronomy becomes mainstream. Astron. Astrophys. Rev. 24, 13 (2016).

  10. 10.

    Padovani, P. et al. Active galactic nuclei: what’s in a name? Astron. Astrophys. Rev. 25, 2 (2017).

  11. 11.

    Padovani, P. On the two main classes of active galactic nuclei. Nat. Astron. 1, 0194 (2017).

  12. 12.

    Fanaroff, B. L. & Riley, J. M. The morphology of extragalactic radio sources of high and low luminosity. Mon. Not. R. Astron. Soc. 167, 31P–36P (1974).

  13. 13.

    Blandford, R. D. & Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 232, 34–48 (1979).

  14. 14.

    Reynolds, S. P. Theoretical studies of compact radio sources. I. Synchrotron radiation from relativistic flows. Astrophys. J. 256, 13–37 (1982).

  15. 15.

    Laing, R. A. & Bridle, A. H. The spectra of jet bases in FR I radio galaxies: implications for particle acceleration. Mon. Not. R. Astron. Soc. 432, 1114–1132 (2013).

  16. 16.

    Falcke, H. & Biermann, P. L. The jet-disk symbiosis. I. Radio to X-ray emission models for quasars. Astron. Astrophys. 293, 665–682 (1995).

  17. 17.

    Blundell, K. M. & Beasley, A. J. The central engines of radio-quiet quasars. Mon. Not. R. Astron. Soc. 299, 165–170 (1998).

  18. 18.

    Ho, L. C. & Ulvestad, J. S. Radio continuum survey of an optically selected sample of nearby Seyfert galaxies. Astrophys. J. Suppl. Ser. 133, 77–118 (2001).

  19. 19.

    Nagar, N. M., Falcke, H., Wilson, A. S. & Ulvestad, J. S. Radio sources in low-luminosity active galactic nuclei. III. “AGNs” in a distance-limited sample of “LLAGNs”. Astron. Astrophys. 392, 53–82 (2002).

  20. 20.

    Nyland, K. et al. The ATLAS3D Project — XXXI. Nuclear radio emission in nearby early-type galaxies. Mon. Not. R. Astron. Soc. 458, 2221–2268 (2016).

  21. 21.

    Baldi, R. D. et al. LeMMINGs — I. The eMERLIN legacy survey of nearby galaxies. 1.5-GHz parsec-scale radio structures and cores. Mon. Not. R. Astron. Soc. 476, 3478–3522 (2018).

  22. 22.

    Chiaraluce, E. et al. From radio-quiet to radio-silent: low-luminosity Seyfert radio cores. Mon. Not. R. Astron. Soc. 485, 3185–3202 (2019).

  23. 23.

    Nagar, N. M., Wilson, A. S. & Falcke, H. Evidence for jet domination of the nuclear radio emission in low-luminosity active galactic nuclei. Astrophys. J. Lett. 559, L87–L90 (2001).

  24. 24.

    Baum, S. A., O’Dea, C. P., Dallacassa, D., de Bruyn, A. G. & Pedlar, A. Kiloparsec-scale radio emission in seyfert galaxies: evidence for starburst-driven superwinds? Astrophys. J. 419, 553 (1993).

  25. 25.

    Kukula, M. J. et al. Unusual radio and optical structures in the Seyfert galaxy Markarian 6. Mon. Not. R. Astron. Soc. 280, 1283–1292 (1996).

  26. 26.

    Kharb, P. et al. Very Large Baseline Array observations of Mrk 6: probing the jet-lobe connection. Mon. Not. R. Astron. Soc. 440, 2976–2987 (2014).

  27. 27.

    Roy, A. L., Wilson, A. S., Ulvestad, J. S. & Colbert, J. M. In EVN Symposium 2000: Proc. 5th European VLBI Network Symposium (eds Conway, J. E., Polatidis, A. G., Booth, R. S. & Pihlström, Y. M.) 7 (Onsala Space Observatory, 2000).

  28. 28.

    Middelberg, E. et al. Motion and properties of nuclear radio components in Seyfert galaxies seen with VLBI. Astron. Astrophys. 417, 925–944 (2004).

  29. 29.

    Giroletti, M. & Panessa, F. The faintest Seyfert radio cores revealed by VLBI. Astrophys. J. Lett. 706, L260–L264 (2009).

  30. 30.

    Panessa, F. & Giroletti, M. Sub-parsec radio cores in nearby Seyfert galaxies. Mon. Not. R. Astron. Soc. 432, 1138–1143 (2013).

  31. 31.

    Blundell, K. M. & Rawlings, S. The optically powerful quasar E1821+643 is associated with a 300 kiloparsec-scale FR I radio structure. Astrophys. J. Lett. 562, L5–L8 (2001).

  32. 32.

    Ulvestad, J. S. & Ho, L. C. Statistical Properties of Radio Emission from the Palomar Seyfert galaxies. Astrophys. J. 558, 561–577 (2001).

  33. 33.

    Capetti, A., Massaro, F. & Baldi, R. D. FRICAT: a FIRST catalog of FR I radio galaxies. Astron. Astrophys. 598, A49 (2017).

  34. 34.

    Chartas, G. et al. High velocity outflows in narrow absorption line quasars. New Astron. Rev. 53, 128–132 (2009).

  35. 35.

    Pounds, K. A. The soft X-ray spectrum of the luminous narrow line Seyfert galaxy PG 1211+143 — evidence for a second high-velocity outflow component. Mon. Not. R. Astron. Soc. 437, 3221–3227 (2014).

  36. 36.

    Nardini, E. et al. Black hole feedback in the luminous quasar PDS 456. Science 347, 860–863 (2015).

  37. 37.

    Gupta, A., Mathur, S. & Krongold, Y. Detection of high velocity outflows in the Seyfert 1 galaxy Mrk 590. Astrophys. J. 798, 4 (2015).

  38. 38.

    Longinotti, A. L. et al. X-ray high-resolution spectroscopy reveals feedback in a Seyfert galaxy from an ultra-fast wind with complex ionization and velocity structure. Astrophys. J. Lett. 813, L39 (2015).

  39. 39.

    Crenshaw, D. M. et al. Intrinsic absorption lines in Seyfert 1 galaxies. I. Ultraviolet spectra from the Hubble Space Telescope. Astrophys. J. 516, 750–768 (1999).

  40. 40.

    Laor, A. & Brandt, W. N. The luminosity dependence of ultraviolet absorption in active galactic nuclei. Astrophys. J. 569, 641–654 (2002).

  41. 41.

    Mullaney, J. R. et al. Narrow-line region gas kinematics of 24 264 optically selected AGN: the radio connection. Mon. Not. R. Astron. Soc. 433, 622–638 (2013).

  42. 42.

    Zakamska, N. L. & Greene, J. E. Quasar feedback and the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 442, 784–804 (2014).

  43. 43.

    Morganti, R., Oosterloo, T., Oonk, J. B. R., Frieswijk, W. & Tadhunter, C. The fast molecular outflow in the Seyfert galaxy IC 5063 as seen by ALMA. Astron. Astrophys. 580, A1 (2015).

  44. 44.

    Capetti, A., Axon, D. J., Macchetto, F. D., Marconi, A. & Winge, C. The origin of the narrow-line region of Markarian 3: an overpressured jet cocoon. Astrophys. J. 516, 187–194 (1999).

  45. 45.

    Hwang, H.-C. et al. Winds as the origin of radio emission in z = 2.5 radio-quiet extremely red quasars. Mon. Not. R. Astron. Soc. 477, 830–844 (2018).

  46. 46.

    Nims, J., Quataert, E. & Faucher-Giguère, C.-A. Observational signatures of galactic winds powered by active galactic nuclei. Mon. Not. R. Astron. Soc. 447, 3612–3622 (2015).

  47. 47.

    Lena, D. et al. The complex gas kinematics in the nucleus of the Seyfert 2 galaxy NGC 1386: rotation, outflows, and inflows. Astrophys. J. 806, 84 (2015).

  48. 48.

    Christopoulou, P. E. et al. Evidence for an outflow from the Seyfert galaxy NGC 4051. Mon. Not. R. Astron. Soc. 284, 385–394 (1997).

  49. 49.

    Gallimore, J. F., Baum, S. A. & O’Dea, C. P. The parsec-scale radio structure of NGC 1068 and the nature of the nuclear radio source. Astrophys. J. 613, 794–810 (2004).

  50. 50.

    Blustin, A. J. & Fabian, A. C. Radio constraints on the volume filling factors of AGN winds. Mon. Not. R. Astron. Soc. 396, 1732–1736 (2009).

  51. 51.

    Steenbrugge, K. C., Jolley, E. J. D., Kuncic, Z. & Blundell, K. M. Radio and X-ray emission from disc winds in radio-quiet quasars. Mon. Not. R. Astron. Soc. 413, 1735–1743 (2011).

  52. 52.

    Heckman, T. M., Alexandroff, R. M., Borthakur, S., Overzier, R. & Leitherer, C. The systematic properties of the warm phase of starburst-driven galactic winds. Astrophys. J. 809, 147 (2015).

  53. 53.

    Fukumura, K., Kazanas, D., Contopoulos, I. & Behar, E. Magnetohydrodynamic accretion disk winds as X-ray absorbers in active galactic nuclei. Astrophys. J. 715, 636–650 (2010).

  54. 54.

    Genzel, R. et al. Infrared imaging and spectroscopy of NGC 7469. Astrophys. J. 444, 129–145 (1995).

  55. 55.

    Maiolino, R., Krabbe, A., Thatte, N. & Genzel, R. Seyfert activity and nuclear star formation in the Circinus galaxy. Astrophys. J. 493, 650–665 (1998).

  56. 56.

    Kharb, P., O’Dea, C. P., Baum, S. A., Colbert, E. J. M. & Xu, C. A radio study of the Seyfert galaxy Markarian 6: implications for Seyfert life cycles. Astrophys. J. 652, 177–188 (2006).

  57. 57.

    Tombesi, F., Sambruna, R. M., Reeves, J. N., Reynolds, C. S. & Braito, V. X-ray evidence for the accretion disc-outflow connection in 3C 111. Mon. Not. R. Astron. Soc. 418, L89–L93 (2011).

  58. 58.

    Giroletti, M. et al. Coexistence of a non-thermal jet and a complex ultra-fast X-ray outflow in a moderately luminous AGN. Astron. Astrophys. 600, A87 (2017).

  59. 59.

    Ponti, G. et al. Ubiquitous equatorial accretion disc winds in black hole soft states. Mon. Not. R. Astron. Soc. 422, L11–L15 (2012).

  60. 60.

    Díaz Trigo, M. & Boirin, L. Accretion disc atmospheres and winds in low-mass X-ray binaries. Astron. Nachr. 337, 368–374 (2016).

  61. 61.

    Ferreira, J., Petrucci, P. O., Murphy, G., Zanni, C. & Henri, G. In Accretion and Ejection in AGN: A Global View (eds Maraschi, L., Ghisellini, G., Della Ceca, R. & Tavecchio, F.) 49 (ASP Conf. Ser. Vol. 427, Astronomical Society of the Pacific, 2010).

  62. 62.

    Tchekhovskoy, A., Narayan, R. & McKinney, J. C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 418, L79–L83 (2011).

  63. 63.

    Shapiro, S. L., Lightman, A. P. & Eardley, D. M. A two-temperature accretion disk model for Cygnus X-1 — structure and spectrum. Astrophys. J. 204, 187–199 (1976).

  64. 64.

    Haardt, F. & Maraschi, L. A two-phase model for the X-ray emission from Seyfert galaxies. Astrophys. J. Lett. 380, L51–L54 (1991).

  65. 65.

    Wang, R., Wu, X.-B. & Kong, M.-Z. The black hole fundamental plane from a uniform sample of radio and X-ray-emitting broad-line AGNs. Astrophys. J. 645, 890–899 (2006).

  66. 66.

    Panessa, F. et al. The X-ray and radio connection in low-luminosity active nuclei. Astron. Astrophys. 467, 519–527 (2007).

  67. 67.

    Panessa, F. et al. The 1.4-GHz radio properties of hard X-ray-selected AGN. Mon. Not. R. Astron. Soc. 447, 1289–1298 (2015).

  68. 68.

    Boroson, T. A. & Green, R. F. The emission-line properties of low-redshift quasi-stellar objects. Astrophys. J. Suppl. Ser. 80, 109–135 (1992).

  69. 69.

    Laor, A. & Behar, E. On the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 390, 847–862 (2008).

  70. 70.

    Guedel, M. & Benz, A. O. X-ray/microwave relation of different types of active stars. Astrophys. J. Lett. 405, L63–L66 (1993).

  71. 71.

    Behar, E. et al. Discovery of millimetre-wave excess emission in radio-quiet active galactic nuclei. Mon. Not. R. Astron. Soc. 451, 517–526 (2015).

  72. 72.

    Behar, E., Vogel, S., Baldi, R. D., Smith, K. L. & Mushotzky, R. F. The mm-wave compact component of an AGN. Mon. Not. R. Astron. Soc. 478, 399–406 (2018).

  73. 73.

    Inoue, Y. & Doi, A. Unveiling the nature of coronae in active galactic nuclei through submillimeter observations. Publ. Astron. Soc. Jpn 66, L8 (2014).

  74. 74.

    Doi, A. & Inoue, Y. High-frequency excess in the radio continuum spectrum of the type-1 Seyfert galaxy NGC 985. Publ. Astron. Soc. Jpn 68, 56 (2016).

  75. 75.

    Inoue, Y. & Doi, A. Detection of coronal magnetic activity in nearby active supermassive black holes. Astrophys. J. 869, 114 (2018).

  76. 76.

    Raginski, I. & Laor, A. AGN coronal emission models — I. The predicted radio emission. Mon. Not. R. Astron. Soc. 459, 2082–2096 (2016).

  77. 77.

    Neupert, W. M. Comparison of solar X-ray line emission with microwave emission during flares. Astrophys. J. Lett. 153, L59 (1968).

  78. 78.

    Güdel, M. et al. Detection of the Neupert effect in the corona of an RS Canum Venaticorum binary system by XMM-Newton and the Very Large Array. Astrophys. J. 577, 371–376 (2002).

  79. 79.

    Malzac, J., Belloni, T., Spruit, H. C. & Kanbach, G. The optical and X-ray flickering of XTE J1118+480. Astron. Astrophys. 407, 335–345 (2003).

  80. 80.

    Malzac, J., Merloni, A. & Fabian, A. C. Jet-disc coupling through a common energy reservoir in the black hole XTE J1118+480. Mon. Not. R. Astron. Soc. 351, 253–264 (2004).

  81. 81.

    Orienti, M., D’Ammando, F., Giroletti, M., Giovannini, G. & Panessa, F. In Proc. Advancing Astrophysics with the Square Kilometre Array (AASKA14) 87 (Proceedings of Science, 2015).

  82. 82.

    Condon, J. J. Radio emission from normal galaxies. Annu. Rev. Astron. Astrophys. 30, 575–611 (1992).

  83. 83.

    Sargent, M. T. et al. The VLA-COSMOS perspective on the infrared-radio relation. I. New constraints on selection biases and the non-evolution of the infrared/radio properties of star-forming and active galactic nucleus galaxies at intermediate and high redshift. Astrophys. J. Suppl. Ser. 186, 341–377 (2010).

  84. 84.

    Thean, A., Pedlar, A., Kukula, M. J., Baum, S. A. & O’Dea, C. P. High-resolution radio observations of Seyfert galaxies in the extended 12-μm sample — II. The properties of compact radio components. Mon. Not. R. Astron. Soc. 325, 737–760 (2001).

  85. 85.

    Bonzini, M. et al. Star formation properties of sub-mJy radio sources. Mon. Not. R. Astron. Soc. 453, 1079–1094 (2015).

  86. 86.

    Delvecchio, I. et al. The VLA-COSMOS 3 GHz Large Project: AGN and host-galaxy properties out to z ~ 6. Astron. Astrophys. 602, A3 (2017).

  87. 87.

    Bondi, M. et al. Linear radio size evolution of μJy populations. Astron. Astrophys. 618, L8 (2018).

  88. 88.

    Maini, A., Prandoni, I., Norris, R. P., Giovannini, G. & Spitler, L. R. Compact radio cores in radio-quiet active galactic nuclei. Astron. Astrophys. 589, L3 (2016).

  89. 89.

    White, S. V. et al. Evidence that the AGN dominates the radio emission in z ~ 1 radio-quiet quasars. Mon. Not. R. Astron. Soc. 468, 217–238 (2017).

  90. 90.

    Kellermann, K. I., Condon, J. J., Kimball, A. E., Perley, R. A. & Ivezić, Ž. Radio-loud and radio-quiet QSOs. Astrophys. J. 831, 168 (2016).

  91. 91.

    Rosario, D. J. et al. The mid-infrared emission of narrow-line active galactic nuclei: star formation, nuclear activity, and two populations revealed by wise. Astrophys. J. 778, 94 (2013).

  92. 92.

    Price, D. J., Pringle, J. E. & King, A. R. A comparison of the acceleration mechanisms in young stellar objects and active galactic nuclei jets. Mon. Not. R. Astron. Soc. 339, 1223–1236 (2003).

  93. 93.

    Fender, R. P., Belloni, T. M. & Gallo, E. Towards a unified model for black hole X-ray binary jets. Mon. Not. R. Astron. Soc. 355, 1105–1118 (2004).

  94. 94.

    Falcke, H., Körding, E. & Markoff, S. A scheme to unify low-power accreting black holes. Jet-dominated accretion flows and the radio/X-ray correlation. Astron. Astrophys. 414, 895–903 (2004).

  95. 95.

    Körding, E., Falcke, H. & Corbel, S. Refining the fundamental plane of accreting black holes. Astron. Astrophys. 456, 439–450 (2006).

  96. 96.

    Russell, D. M. et al. Testing the jet quenching paradigm with an ultradeep observation of a steadily soft state black hole. Astrophys. J. Lett. 739, L19 (2011).

  97. 97.

    Belloni, T., Méndez, M., King, A. R., van der Klis, M. & van Paradijs, J. A unified model for the spectral variability in GRS 1915+105. Astrophys. J. Lett. 488, L109–L112 (1997).

  98. 98.

    Marscher, A. P. et al. Observational evidence for the accretion-disk origin for a radio jet in an active galaxy. Nature 417, 625–627 (2002).

  99. 99.

    Chatterjee, R. et al. Disk-jet connection in the radio galaxy 3C 120. Astrophys. J. 704, 1689–1703 (2009).

  100. 100.

    Wrobel, J. M. Photometric variability and astrometric stability of the radio continuum nucleus in the Seyfert Galaxy NGC 5548. Astrophys. J. 531, 716–726 (2000).

  101. 101.

    Barvainis, R., Lehár, J., Birkinshaw, M., Falcke, H. & Blundell, K. M. Radio variability of radio-quiet and radio-loud quasars. Astrophys. J. 618, 108–122 (2005).

  102. 102.

    Mundell, C. G., Ferruit, P., Nagar, N. & Wilson, A. S. Radio variability in Seyfert nuclei. Astrophys. J. 703, 802–815 (2009).

  103. 103.

    Baldi, R. D., Behar, E., Laor, A. & Horesh, A. Milimetre-band variability of the radio-quiet nucleus of NGC 7469. Mon. Not. R. Astron. Soc. 454, 4277–4281 (2015).

  104. 104.

    Bell, M. E. et al. X-ray and radio variability in the low-luminosity active galactic nucleus NGC 7213. Mon. Not. R. Astron. Soc. 411, 402–410 (2011).

  105. 105.

    King, A. L. et al. A distinctive disk-jet coupling in the lowest-mass Seyfert, NGC 4395. Astrophys. J. Lett. 774, L25 (2013).

  106. 106.

    Jones, S. et al. Radio and X-ray variability in the Seyfert galaxy NGC 4051. Mon. Not. R. Astron. Soc. 412, 2641–2652 (2011).

  107. 107.

    Jones, S., McHardy, I. & Maccarone, T. J. A comprehensive long-term study of the radio and X-ray variability of NGC 4051 paper II. Mon. Not. R. Astron. Soc. 465, 1336–1347 (2017).

  108. 108.

    Markoff, S., Falcke, H. & Fender, R. A jet model for the broadband spectrum of XTE J1118+480. Synchrotron emission from radio to X-rays in the low/hard spectral state. Astron. Astrophys. 372, L25–L28 (2001).

  109. 109.

    Yuan, F., Markoff, S. & Falcke, H. A jet-ADAF model for Sgr A*. Astron. Astrophys. 383, 854–863 (2002).

  110. 110.

    Heinz, S. & Sunyaev, R. A. The non-linear dependence of flux on black hole mass and accretion rate in core-dominated jets. Mon. Not. R. Astron. Soc. 343, L59–L64 (2003).

  111. 111.

    Merloni, A., Heinz, S. & di Matteo, T. A Fundamental plane of black hole activity. Mon. Not. R. Astron. Soc. 345, 1057–1076 (2003).

  112. 112.

    Plotkin, R. M., Markoff, S., Kelly, B. C., Körding, E. & Anderson, S. F. Using the fundamental plane of black hole activity to distinguish X-ray processes from weakly accreting black holes. Mon. Not. R. Astron. Soc. 419, 267–286 (2012).

  113. 113.

    Tobin, J. J. et al. The VLA Nascent Disk and Multiplicity (VANDAM) Survey of Perseus protostars. Resolving the sub-arcsecond binary system in NGC 1333 IRAS2A. Astrophys. J. 798, 61 (2015).

  114. 114.

    Osorio, M. et al. Star formation under the outflow: the discovery of a non-thermal jet from OMC-2 FIR 3 and its relationship to the deeply embedded FIR 4 protostar. Astrophys. J. 840, 36 (2017).

  115. 115.

    Bally, J. Protostellar outflows. Annu. Rev. Astron. Astrophys. 54, 491–528 (2016).

  116. 116.

    Körding, E. et al. A transient radio jet in an erupting dwarf nova. Science 320, 1318–1320 (2008).

  117. 117.

    Roberts, T. P. X-ray observations of ultraluminous X-ray sources. Astrophys. Space Sci. 311, 203–212 (2007).

  118. 118.

    Cseh, D. et al. The evolution of a jet ejection of the ultraluminous X-ray source Holmberg II X-1. Mon. Not. R. Astron. Soc. 452, 24–31 (2015).

  119. 119.

    Dai, L., McKinney, J. C., Roth, N., Ramirez-Ruiz, E. & Miller, M. C. A unified model for tidal disruption events. Astrophys. J. Lett. 859, L20 (2018).

  120. 120.

    Bloom, J. S. et al. A possible relativistic jetted outburst from a massive black hole fed by a tidally disrupted star. Science 333, 203–206 (2011).

  121. 121.

    van Velzen, S. et al. A radio jet from the optical and x-ray bright stellar tidal disruption flare ASASSN-14li. Science 351, 62–65 (2016).

  122. 122.

    Pasham, D. R. & van Velzen, S. Discovery of a time lag between the soft X-ray and radio emission of the tidal disruption flare ASASSN-14li: evidence for linear disk-jet coupling. Astrophys. J. 856, 1 (2018).

  123. 123.

    Mattila, S. et al. A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger. Science 361, 482–485 (2018).

  124. 124.

    Bontempi, P., Giroletti, M., Panessa, F., Orienti, M. & Doi, A. Physical properties of the nuclear region in Seyfert galaxies derived from observations with the European VLBI Network. Mon. Not. R. Astron. Soc. 426, 588–594 (2012).

  125. 125.

    Giroletti, M., Taylor, G. B. & Giovannini, G. The two-sided parsec-scale structure of the low-luminosity active galactic nucleus in NGC 4278. Astrophys. J. 622, 178–186 (2005).

  126. 126.

    Veilleux, S., Cecil, G. & Bland-Hawthorn, J. Galactic winds. Annu. Rev. Astron. Astrophys. 43, 769–826 (2005).

  127. 127.

    Harrison, C. M. et al. AGN outflows and feedback twenty years on. Nat. Astron. 2, 198–205 (2018).

  128. 128.

    Laor, A., Baldi, R. D. & Behar, E. What drives the radio slopes in radio-quiet quasars? Mon. Not. R. Astron. Soc. 482, 5513–5523 (2019).

  129. 129.

    Merloni, A. & Fabian, A. C. Coronal outflow dominated accretion discs: a new possibility for low-luminosity black holes? Mon. Not. R. Astron. Soc. 332, 165–175 (2002).

  130. 130.

    Liu, T., Wang, J.-X., Yang, H., Zhu, F.-F. & Zhou, Y.-Y. Are X-ray emitting coronae around supermassive black holes outflowing? Astrophys. J. 783, 106 (2014).

  131. 131.

    Pérez-Torres, M. A., Romero-Cañizales, C., Alberdi, A. & Polatidis, A. An extremely prolific supernova factory in the buried nucleus of the starburst galaxy IC 694. Astrophys. J. Lett. 507, L17–L20 (2009).

  132. 132.

    Corbel, S. et al. Formation of the compact jets in the black hole GX 339-4. Mon. Not. R. Astron. Soc. 431, L107–L111 (2013).

  133. 133.

    van Haarlem, M. P. et al. LOFAR: the LOw-Frequency ARray. Astron. Astrophys. 556, A2 (2013).

  134. 134.

    Carilli, C. In Proc. Advancing Astrophysics with the Square Kilometre Array (AASKA14) 171 (Proceedings of Science, 2015).

  135. 135.

    Gurvits, L. I. In 42nd COSPAR Scientific Assembly abstr. E1.8-21-18 (COSPAR, 2018).

  136. 136.

    Braun, R. et al. Anticipated SKA1 Science Performance SKA-TEL-SKO-0000818 (SKA, 2017); https://go.nature.com/2I6mKwL

  137. 137.

    Murphy, E. et al. In Proc. Advancing Astrophysics with the Square Kilometre Array (AASKA14) 85 (Proceedings of Science, 2015).

  138. 138.

    Paragi, Z. et al. In Proc. Advancing Astrophysics with the Square Kilometre Array (AASKA14) 143 (Proceedings of Science, 2015).

  139. 139.

    Pedlar, A. et al. The radio nucleus of NGC4151 at 5-GHz and 8-GHz. Mon. Not. R. Astron. Soc. 263, 471 (1993).

  140. 140.

    Williams, D. R. A. et al. Radio jets in NGC 4151: where eMERLIN meets HST. Mon. Not. R. Astron. Soc. 472, 3842–3853 (2017).

  141. 141.

    Mundell, C. G., Wrobel, J. M., Pedlar, A. & Gallimore, J. F. The nuclear regions of the Seyfert Galaxy NGC 4151: parsec-scale H i absorption and a remarkable radio jet. Astrophys. J. 583, 192–204 (2003).

  142. 142.

    Olsson, E., Aalto, S., Thomasson, M. & Beswick, R. Star-formation in the central kpc of the starburst/LINER galaxy NGC 1614. Astron. Astrophys. 513, A11 (2010).

  143. 143.

    Herrero-Illana, R. et al. No AGN evidence in NGC 1614 from deep radio VLBI observations. Mon. Not. R. Astron. Soc. 470, L112–L116 (2017).

  144. 144.

    Hardcastle, M. J. & Looney, L. W. The properties of powerful radio sources at 90 GHz. Mon. Not. R. Astron. Soc. 388, 176–186 (2008).

  145. 145.

    Cotton, W. D. et al. 90 GHz Observations of M87 and Hydra A. Astrophys. J. 701, 1872–1879 (2009).

  146. 146.

    Fender, R. P., Pooley, G. G., Durouchoux, P., Tilanus, R. P. J. & Brocksopp, C. The very flat radio-millimetre spectrum of Cygnus X-1. Mon. Not. R. Astron. Soc. 312, 853–858 (2000).

  147. 147.

    Berger, E. et al. Radio monitoring of the tidal disruption event swift J164449.3+573451. I. Jet energetics and the pristine parsec-scale environment of a supermassive black hole. Astrophys. J. 748, 36 (2012).

  148. 148.

    Yuan, Q., Wang, Q. D., Lei, W.-H., Gao, H. & Zhang, B. Catching jetted tidal disruption events early in millimetre. Mon. Not. R. Astron. Soc. 461, 3375–3384 (2016).

  149. 149.

    Díaz Trigo, M. et al. ALMA observations of 4U 1728–34 and 4U 1820–30: first detection of neutron star X-ray binaries at 300 GHz. Astron. Astrophys. 600, A8 (2017).

  150. 150.

    Díaz Trigo, M. et al. The evolving jet spectrum of the neutron star X-ray binary Aql X-1 in transitional states during its 2016 outburst. Astron. Astrophys. 616, A23 (2018).

  151. 151.

    Tetarenko, A. J. et al. NOEMA sub-millimetre detection of MAXI J1820+070. The Astronomer’s Telegram 11440 (2018).

Download references

Acknowledgements

This review is the result of several fruitful discussions raised during the meeting ‘The radio–X-ray connection in accreting objects’ (21–25 May 2018, Tenuta Monacelle, Monopoli, Italy). The authors thank all the participants of the meeting: J. Bally, N. Brandt, G. Brunetti, A. Capetti, S. Corbel, L. Dai, J. Davelaar, B. De Marco, J. Ferreira, J. Gomez, M. Hardcastle, Y. Inuoe, M. Jarvis, P. Kharb, A. Kimball (in particular for her original idea that inspired Fig. 2), M. Koss, C. Mundell, D. Pasham, U. Peretz, M. Perucho, R. Plotkin, I. Prandoni, J. Poutanen, T. Roberts, D. Williams, C. Tadhunter, S. Tchekhovskoy, F. Ursini, D. Worrall and N. Zakamska. We also thank D. Altamirano, S. Antoniucci, P. Casella, E. Chiaraluce, S. Hoenig, A. Merloni, M. Middleton, M. Pahari, M. Perez-Torres and D. Williams.

Author information

Competing interests

The authors declare no competing interests.

Correspondence to Francesca Panessa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Prototype radio maps of RQ AGNs with extended radio morphologies.
Fig. 2: Sketch of the four main different physical mechanisms producing radio emission in RQ AGNs.
Fig. 3: Radio luminosities at 1.4 GHz versus the velocity width containing 90% of the [O iii] line.
Fig. 4: SFR derived from the FIR luminosity versus the SFR from the monochromatic radio power, P1.4GHz, for the E-CDFS sample.
Fig. 5: Discrete cross-correlation function (CCF) plot showing time lag against the correlation coefficient for X-ray to radio (black crosses) for NGC 7213.
Fig. 6: X-ray luminosity (2–10 keV, erg s−1) versus millimetre-band luminosity (90–100 GHz, erg s−1) for accreting compact objects.
Fig. 7: Flow chart to guide the interpretation of the radio emission in local RQ AGNs.