Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The origin of radio emission from radio-quiet active galactic nuclei


The central nuclei of galaxies, where supermassive black holes (SMBHs) are thought to reside, can experience phases of activity when they become active galactic nuclei (AGNs). An AGN can eject winds and jets and produce radiation across the entire electromagnetic spectrum. The fraction of the bolometric emission in the radio spans a factor of approximately 105 across the different classes of AGNs. The weakest radio sources, radio-quiet (RQ) AGNs, are typically 1,000 times fainter than the radio-loud (RL) AGNs, and represent the majority of the AGN population. In RQ AGNs, the absence of luminous jets allows us to probe radio emission from a wide range of possible mechanisms: star formation, AGN-driven wind, free-free emission from photoionized gas, low-power jets and the innermost accretion disk coronal activity. All these mechanisms can now be probed with unprecedented precision and spatial resolution, owing to the current and forthcoming generation of highly sensitive radio arrays.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Prototype radio maps of RQ AGNs with extended radio morphologies.
Fig. 2: Sketch of the four main different physical mechanisms producing radio emission in RQ AGNs.
Fig. 3: Radio luminosities at 1.4 GHz versus the velocity width containing 90% of the [O iii] line.
Fig. 4: SFR derived from the FIR luminosity versus the SFR from the monochromatic radio power, P1.4GHz, for the E-CDFS sample.
Fig. 5: Discrete cross-correlation function (CCF) plot showing time lag against the correlation coefficient for X-ray to radio (black crosses) for NGC 7213.
Fig. 6: X-ray luminosity (2–10 keV, erg s−1) versus millimetre-band luminosity (90–100 GHz, erg s−1) for accreting compact objects.
Fig. 7: Flow chart to guide the interpretation of the radio emission in local RQ AGNs.

Data availability

All relevant data included in the paper are available through the corresponding cited publications or from the authors upon reasonable request.


  1. 1.

    Begelman, M. C., Blandford, R. D. & Rees, M. J. Theory of extragalactic radio sources. Rev. Mod. Phys. 56, 255–351 (1984).

    Article  ADS  Google Scholar 

  2. 2.

    Kellermann, K. I., Sramek, R., Schmidt, M., Shaffer, D. B. & Green, R. VLA observations of objects in the Palomar Bright Quasar Survey. Astron. J. 98, 1195–1207 (1989).

    Article  ADS  Google Scholar 

  3. 3.

    Terashima, Y. & Wilson, A. S. Chandra snapshot observations of low-luminosity active galactic nuclei with a compact radio source. Astrophys. J. 583, 145–158 (2003).

    Article  ADS  Google Scholar 

  4. 4.

    Ulvestad, J. S., Antonucci, R. R. J. & Barvainis, R. VLBA imaging of central engines in radio-quiet quasars. Astrophys. J. 621, 123–129 (2005).

    Article  ADS  Google Scholar 

  5. 5.

    Leipski, C., Falcke, H., Bennert, N. & Hüttemeister, S. The radio structure of radio-quiet quasars. Astron. Astrophys. 455, 161–172 (2006).

    Article  ADS  Google Scholar 

  6. 6.

    Padovani, P. et al. The VLA survey of Chandra Deep Field South. V. Evolution and luminosity functions of sub-millijansky radio sources and the issue of radio emission in radio-quiet active galactic nuclei. Astrophys. J. 740, 20 (2011).

    Article  ADS  Google Scholar 

  7. 7.

    Doi, A., Nakanishi, K., Nagai, H., Kohno, K. & Kameno, S. Millimeter radio continuum emissions as the activity of supermassive black holes in nearby early-type galaxies and low-luminosity active galactic nuclei. Astron. J. 142, 167 (2011).

    Article  ADS  Google Scholar 

  8. 8.

    Zakamska, N. L. et al. Star formation in quasar hosts and the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 455, 4191–4211 (2016).

    Article  ADS  Google Scholar 

  9. 9.

    Padovani, P. The faint radio sky: radio astronomy becomes mainstream. Astron. Astrophys. Rev. 24, 13 (2016).

    Article  ADS  Google Scholar 

  10. 10.

    Padovani, P. et al. Active galactic nuclei: what’s in a name? Astron. Astrophys. Rev. 25, 2 (2017).

    Article  ADS  Google Scholar 

  11. 11.

    Padovani, P. On the two main classes of active galactic nuclei. Nat. Astron. 1, 0194 (2017).

    Article  ADS  Google Scholar 

  12. 12.

    Fanaroff, B. L. & Riley, J. M. The morphology of extragalactic radio sources of high and low luminosity. Mon. Not. R. Astron. Soc. 167, 31P–36P (1974).

    Article  ADS  Google Scholar 

  13. 13.

    Blandford, R. D. & Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 232, 34–48 (1979).

    Article  ADS  Google Scholar 

  14. 14.

    Reynolds, S. P. Theoretical studies of compact radio sources. I. Synchrotron radiation from relativistic flows. Astrophys. J. 256, 13–37 (1982).

    Article  ADS  Google Scholar 

  15. 15.

    Laing, R. A. & Bridle, A. H. The spectra of jet bases in FR I radio galaxies: implications for particle acceleration. Mon. Not. R. Astron. Soc. 432, 1114–1132 (2013).

    Article  ADS  Google Scholar 

  16. 16.

    Falcke, H. & Biermann, P. L. The jet-disk symbiosis. I. Radio to X-ray emission models for quasars. Astron. Astrophys. 293, 665–682 (1995).

    ADS  Google Scholar 

  17. 17.

    Blundell, K. M. & Beasley, A. J. The central engines of radio-quiet quasars. Mon. Not. R. Astron. Soc. 299, 165–170 (1998).

    Article  ADS  Google Scholar 

  18. 18.

    Ho, L. C. & Ulvestad, J. S. Radio continuum survey of an optically selected sample of nearby Seyfert galaxies. Astrophys. J. Suppl. Ser. 133, 77–118 (2001).

    Article  ADS  Google Scholar 

  19. 19.

    Nagar, N. M., Falcke, H., Wilson, A. S. & Ulvestad, J. S. Radio sources in low-luminosity active galactic nuclei. III. “AGNs” in a distance-limited sample of “LLAGNs”. Astron. Astrophys. 392, 53–82 (2002).

    Article  ADS  Google Scholar 

  20. 20.

    Nyland, K. et al. The ATLAS3D Project — XXXI. Nuclear radio emission in nearby early-type galaxies. Mon. Not. R. Astron. Soc. 458, 2221–2268 (2016).

    Article  ADS  Google Scholar 

  21. 21.

    Baldi, R. D. et al. LeMMINGs — I. The eMERLIN legacy survey of nearby galaxies. 1.5-GHz parsec-scale radio structures and cores. Mon. Not. R. Astron. Soc. 476, 3478–3522 (2018).

    Article  ADS  Google Scholar 

  22. 22.

    Chiaraluce, E. et al. From radio-quiet to radio-silent: low-luminosity Seyfert radio cores. Mon. Not. R. Astron. Soc. 485, 3185–3202 (2019).

    Article  ADS  Google Scholar 

  23. 23.

    Nagar, N. M., Wilson, A. S. & Falcke, H. Evidence for jet domination of the nuclear radio emission in low-luminosity active galactic nuclei. Astrophys. J. Lett. 559, L87–L90 (2001).

    Article  ADS  Google Scholar 

  24. 24.

    Baum, S. A., O’Dea, C. P., Dallacassa, D., de Bruyn, A. G. & Pedlar, A. Kiloparsec-scale radio emission in seyfert galaxies: evidence for starburst-driven superwinds? Astrophys. J. 419, 553 (1993).

    Article  ADS  Google Scholar 

  25. 25.

    Kukula, M. J. et al. Unusual radio and optical structures in the Seyfert galaxy Markarian 6. Mon. Not. R. Astron. Soc. 280, 1283–1292 (1996).

    Article  ADS  Google Scholar 

  26. 26.

    Kharb, P. et al. Very Large Baseline Array observations of Mrk 6: probing the jet-lobe connection. Mon. Not. R. Astron. Soc. 440, 2976–2987 (2014).

    Article  ADS  Google Scholar 

  27. 27.

    Roy, A. L., Wilson, A. S., Ulvestad, J. S. & Colbert, J. M. In EVN Symposium 2000: Proc. 5th European VLBI Network Symposium (eds Conway, J. E., Polatidis, A. G., Booth, R. S. & Pihlström, Y. M.) 7 (Onsala Space Observatory, 2000).

  28. 28.

    Middelberg, E. et al. Motion and properties of nuclear radio components in Seyfert galaxies seen with VLBI. Astron. Astrophys. 417, 925–944 (2004).

    Article  ADS  Google Scholar 

  29. 29.

    Giroletti, M. & Panessa, F. The faintest Seyfert radio cores revealed by VLBI. Astrophys. J. Lett. 706, L260–L264 (2009).

    Article  ADS  Google Scholar 

  30. 30.

    Panessa, F. & Giroletti, M. Sub-parsec radio cores in nearby Seyfert galaxies. Mon. Not. R. Astron. Soc. 432, 1138–1143 (2013).

    Article  ADS  Google Scholar 

  31. 31.

    Blundell, K. M. & Rawlings, S. The optically powerful quasar E1821+643 is associated with a 300 kiloparsec-scale FR I radio structure. Astrophys. J. Lett. 562, L5–L8 (2001).

    Article  ADS  Google Scholar 

  32. 32.

    Ulvestad, J. S. & Ho, L. C. Statistical Properties of Radio Emission from the Palomar Seyfert galaxies. Astrophys. J. 558, 561–577 (2001).

    Article  ADS  Google Scholar 

  33. 33.

    Capetti, A., Massaro, F. & Baldi, R. D. FRICAT: a FIRST catalog of FR I radio galaxies. Astron. Astrophys. 598, A49 (2017).

    Article  ADS  Google Scholar 

  34. 34.

    Chartas, G. et al. High velocity outflows in narrow absorption line quasars. New Astron. Rev. 53, 128–132 (2009).

    Article  ADS  Google Scholar 

  35. 35.

    Pounds, K. A. The soft X-ray spectrum of the luminous narrow line Seyfert galaxy PG 1211+143 — evidence for a second high-velocity outflow component. Mon. Not. R. Astron. Soc. 437, 3221–3227 (2014).

    Article  ADS  Google Scholar 

  36. 36.

    Nardini, E. et al. Black hole feedback in the luminous quasar PDS 456. Science 347, 860–863 (2015).

    Article  ADS  Google Scholar 

  37. 37.

    Gupta, A., Mathur, S. & Krongold, Y. Detection of high velocity outflows in the Seyfert 1 galaxy Mrk 590. Astrophys. J. 798, 4 (2015).

    Article  ADS  Google Scholar 

  38. 38.

    Longinotti, A. L. et al. X-ray high-resolution spectroscopy reveals feedback in a Seyfert galaxy from an ultra-fast wind with complex ionization and velocity structure. Astrophys. J. Lett. 813, L39 (2015).

    Article  ADS  Google Scholar 

  39. 39.

    Crenshaw, D. M. et al. Intrinsic absorption lines in Seyfert 1 galaxies. I. Ultraviolet spectra from the Hubble Space Telescope. Astrophys. J. 516, 750–768 (1999).

    Article  ADS  Google Scholar 

  40. 40.

    Laor, A. & Brandt, W. N. The luminosity dependence of ultraviolet absorption in active galactic nuclei. Astrophys. J. 569, 641–654 (2002).

    Article  ADS  Google Scholar 

  41. 41.

    Mullaney, J. R. et al. Narrow-line region gas kinematics of 24 264 optically selected AGN: the radio connection. Mon. Not. R. Astron. Soc. 433, 622–638 (2013).

    Article  ADS  Google Scholar 

  42. 42.

    Zakamska, N. L. & Greene, J. E. Quasar feedback and the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 442, 784–804 (2014).

    Article  ADS  Google Scholar 

  43. 43.

    Morganti, R., Oosterloo, T., Oonk, J. B. R., Frieswijk, W. & Tadhunter, C. The fast molecular outflow in the Seyfert galaxy IC 5063 as seen by ALMA. Astron. Astrophys. 580, A1 (2015).

    Article  ADS  Google Scholar 

  44. 44.

    Capetti, A., Axon, D. J., Macchetto, F. D., Marconi, A. & Winge, C. The origin of the narrow-line region of Markarian 3: an overpressured jet cocoon. Astrophys. J. 516, 187–194 (1999).

    Article  ADS  Google Scholar 

  45. 45.

    Hwang, H.-C. et al. Winds as the origin of radio emission in z = 2.5 radio-quiet extremely red quasars. Mon. Not. R. Astron. Soc. 477, 830–844 (2018).

    Article  ADS  Google Scholar 

  46. 46.

    Nims, J., Quataert, E. & Faucher-Giguère, C.-A. Observational signatures of galactic winds powered by active galactic nuclei. Mon. Not. R. Astron. Soc. 447, 3612–3622 (2015).

    Article  ADS  Google Scholar 

  47. 47.

    Lena, D. et al. The complex gas kinematics in the nucleus of the Seyfert 2 galaxy NGC 1386: rotation, outflows, and inflows. Astrophys. J. 806, 84 (2015).

    Article  ADS  Google Scholar 

  48. 48.

    Christopoulou, P. E. et al. Evidence for an outflow from the Seyfert galaxy NGC 4051. Mon. Not. R. Astron. Soc. 284, 385–394 (1997).

    Article  ADS  Google Scholar 

  49. 49.

    Gallimore, J. F., Baum, S. A. & O’Dea, C. P. The parsec-scale radio structure of NGC 1068 and the nature of the nuclear radio source. Astrophys. J. 613, 794–810 (2004).

    Article  ADS  Google Scholar 

  50. 50.

    Blustin, A. J. & Fabian, A. C. Radio constraints on the volume filling factors of AGN winds. Mon. Not. R. Astron. Soc. 396, 1732–1736 (2009).

    Article  ADS  Google Scholar 

  51. 51.

    Steenbrugge, K. C., Jolley, E. J. D., Kuncic, Z. & Blundell, K. M. Radio and X-ray emission from disc winds in radio-quiet quasars. Mon. Not. R. Astron. Soc. 413, 1735–1743 (2011).

    Article  ADS  Google Scholar 

  52. 52.

    Heckman, T. M., Alexandroff, R. M., Borthakur, S., Overzier, R. & Leitherer, C. The systematic properties of the warm phase of starburst-driven galactic winds. Astrophys. J. 809, 147 (2015).

    Article  ADS  Google Scholar 

  53. 53.

    Fukumura, K., Kazanas, D., Contopoulos, I. & Behar, E. Magnetohydrodynamic accretion disk winds as X-ray absorbers in active galactic nuclei. Astrophys. J. 715, 636–650 (2010).

    Article  ADS  Google Scholar 

  54. 54.

    Genzel, R. et al. Infrared imaging and spectroscopy of NGC 7469. Astrophys. J. 444, 129–145 (1995).

    Article  ADS  Google Scholar 

  55. 55.

    Maiolino, R., Krabbe, A., Thatte, N. & Genzel, R. Seyfert activity and nuclear star formation in the Circinus galaxy. Astrophys. J. 493, 650–665 (1998).

    Article  ADS  Google Scholar 

  56. 56.

    Kharb, P., O’Dea, C. P., Baum, S. A., Colbert, E. J. M. & Xu, C. A radio study of the Seyfert galaxy Markarian 6: implications for Seyfert life cycles. Astrophys. J. 652, 177–188 (2006).

    Article  ADS  Google Scholar 

  57. 57.

    Tombesi, F., Sambruna, R. M., Reeves, J. N., Reynolds, C. S. & Braito, V. X-ray evidence for the accretion disc-outflow connection in 3C 111. Mon. Not. R. Astron. Soc. 418, L89–L93 (2011).

    Article  ADS  Google Scholar 

  58. 58.

    Giroletti, M. et al. Coexistence of a non-thermal jet and a complex ultra-fast X-ray outflow in a moderately luminous AGN. Astron. Astrophys. 600, A87 (2017).

    Article  Google Scholar 

  59. 59.

    Ponti, G. et al. Ubiquitous equatorial accretion disc winds in black hole soft states. Mon. Not. R. Astron. Soc. 422, L11–L15 (2012).

    Article  ADS  Google Scholar 

  60. 60.

    Díaz Trigo, M. & Boirin, L. Accretion disc atmospheres and winds in low-mass X-ray binaries. Astron. Nachr. 337, 368–374 (2016).

    Article  ADS  Google Scholar 

  61. 61.

    Ferreira, J., Petrucci, P. O., Murphy, G., Zanni, C. & Henri, G. In Accretion and Ejection in AGN: A Global View (eds Maraschi, L., Ghisellini, G., Della Ceca, R. & Tavecchio, F.) 49 (ASP Conf. Ser. Vol. 427, Astronomical Society of the Pacific, 2010).

  62. 62.

    Tchekhovskoy, A., Narayan, R. & McKinney, J. C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 418, L79–L83 (2011).

    Article  ADS  Google Scholar 

  63. 63.

    Shapiro, S. L., Lightman, A. P. & Eardley, D. M. A two-temperature accretion disk model for Cygnus X-1 — structure and spectrum. Astrophys. J. 204, 187–199 (1976).

    Article  ADS  Google Scholar 

  64. 64.

    Haardt, F. & Maraschi, L. A two-phase model for the X-ray emission from Seyfert galaxies. Astrophys. J. Lett. 380, L51–L54 (1991).

    Article  ADS  Google Scholar 

  65. 65.

    Wang, R., Wu, X.-B. & Kong, M.-Z. The black hole fundamental plane from a uniform sample of radio and X-ray-emitting broad-line AGNs. Astrophys. J. 645, 890–899 (2006).

    Article  ADS  Google Scholar 

  66. 66.

    Panessa, F. et al. The X-ray and radio connection in low-luminosity active nuclei. Astron. Astrophys. 467, 519–527 (2007).

    Article  ADS  Google Scholar 

  67. 67.

    Panessa, F. et al. The 1.4-GHz radio properties of hard X-ray-selected AGN. Mon. Not. R. Astron. Soc. 447, 1289–1298 (2015).

    Article  ADS  Google Scholar 

  68. 68.

    Boroson, T. A. & Green, R. F. The emission-line properties of low-redshift quasi-stellar objects. Astrophys. J. Suppl. Ser. 80, 109–135 (1992).

    Article  ADS  Google Scholar 

  69. 69.

    Laor, A. & Behar, E. On the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 390, 847–862 (2008).

    Article  ADS  Google Scholar 

  70. 70.

    Guedel, M. & Benz, A. O. X-ray/microwave relation of different types of active stars. Astrophys. J. Lett. 405, L63–L66 (1993).

    Article  ADS  Google Scholar 

  71. 71.

    Behar, E. et al. Discovery of millimetre-wave excess emission in radio-quiet active galactic nuclei. Mon. Not. R. Astron. Soc. 451, 517–526 (2015).

    Article  ADS  Google Scholar 

  72. 72.

    Behar, E., Vogel, S., Baldi, R. D., Smith, K. L. & Mushotzky, R. F. The mm-wave compact component of an AGN. Mon. Not. R. Astron. Soc. 478, 399–406 (2018).

    Article  ADS  Google Scholar 

  73. 73.

    Inoue, Y. & Doi, A. Unveiling the nature of coronae in active galactic nuclei through submillimeter observations. Publ. Astron. Soc. Jpn 66, L8 (2014).

    Article  ADS  Google Scholar 

  74. 74.

    Doi, A. & Inoue, Y. High-frequency excess in the radio continuum spectrum of the type-1 Seyfert galaxy NGC 985. Publ. Astron. Soc. Jpn 68, 56 (2016).

    Article  ADS  Google Scholar 

  75. 75.

    Inoue, Y. & Doi, A. Detection of coronal magnetic activity in nearby active supermassive black holes. Astrophys. J. 869, 114 (2018).

    Article  ADS  Google Scholar 

  76. 76.

    Raginski, I. & Laor, A. AGN coronal emission models — I. The predicted radio emission. Mon. Not. R. Astron. Soc. 459, 2082–2096 (2016).

    Article  ADS  Google Scholar 

  77. 77.

    Neupert, W. M. Comparison of solar X-ray line emission with microwave emission during flares. Astrophys. J. Lett. 153, L59 (1968).

    Article  ADS  Google Scholar 

  78. 78.

    Güdel, M. et al. Detection of the Neupert effect in the corona of an RS Canum Venaticorum binary system by XMM-Newton and the Very Large Array. Astrophys. J. 577, 371–376 (2002).

    Article  ADS  Google Scholar 

  79. 79.

    Malzac, J., Belloni, T., Spruit, H. C. & Kanbach, G. The optical and X-ray flickering of XTE J1118+480. Astron. Astrophys. 407, 335–345 (2003).

    Article  ADS  Google Scholar 

  80. 80.

    Malzac, J., Merloni, A. & Fabian, A. C. Jet-disc coupling through a common energy reservoir in the black hole XTE J1118+480. Mon. Not. R. Astron. Soc. 351, 253–264 (2004).

    Article  ADS  Google Scholar 

  81. 81.

    Orienti, M., D’Ammando, F., Giroletti, M., Giovannini, G. & Panessa, F. In Proc. Advancing Astrophysics with the Square Kilometre Array (AASKA14) 87 (Proceedings of Science, 2015).

  82. 82.

    Condon, J. J. Radio emission from normal galaxies. Annu. Rev. Astron. Astrophys. 30, 575–611 (1992).

    Article  ADS  Google Scholar 

  83. 83.

    Sargent, M. T. et al. The VLA-COSMOS perspective on the infrared-radio relation. I. New constraints on selection biases and the non-evolution of the infrared/radio properties of star-forming and active galactic nucleus galaxies at intermediate and high redshift. Astrophys. J. Suppl. Ser. 186, 341–377 (2010).

    Article  ADS  Google Scholar 

  84. 84.

    Thean, A., Pedlar, A., Kukula, M. J., Baum, S. A. & O’Dea, C. P. High-resolution radio observations of Seyfert galaxies in the extended 12-μm sample — II. The properties of compact radio components. Mon. Not. R. Astron. Soc. 325, 737–760 (2001).

    Article  ADS  Google Scholar 

  85. 85.

    Bonzini, M. et al. Star formation properties of sub-mJy radio sources. Mon. Not. R. Astron. Soc. 453, 1079–1094 (2015).

    Article  ADS  Google Scholar 

  86. 86.

    Delvecchio, I. et al. The VLA-COSMOS 3 GHz Large Project: AGN and host-galaxy properties out to z ~ 6. Astron. Astrophys. 602, A3 (2017).

    Article  Google Scholar 

  87. 87.

    Bondi, M. et al. Linear radio size evolution of μJy populations. Astron. Astrophys. 618, L8 (2018).

    Article  ADS  Google Scholar 

  88. 88.

    Maini, A., Prandoni, I., Norris, R. P., Giovannini, G. & Spitler, L. R. Compact radio cores in radio-quiet active galactic nuclei. Astron. Astrophys. 589, L3 (2016).

    Article  ADS  Google Scholar 

  89. 89.

    White, S. V. et al. Evidence that the AGN dominates the radio emission in z ~ 1 radio-quiet quasars. Mon. Not. R. Astron. Soc. 468, 217–238 (2017).

    Article  ADS  Google Scholar 

  90. 90.

    Kellermann, K. I., Condon, J. J., Kimball, A. E., Perley, R. A. & Ivezić, Ž. Radio-loud and radio-quiet QSOs. Astrophys. J. 831, 168 (2016).

    Article  ADS  Google Scholar 

  91. 91.

    Rosario, D. J. et al. The mid-infrared emission of narrow-line active galactic nuclei: star formation, nuclear activity, and two populations revealed by wise. Astrophys. J. 778, 94 (2013).

    Article  ADS  Google Scholar 

  92. 92.

    Price, D. J., Pringle, J. E. & King, A. R. A comparison of the acceleration mechanisms in young stellar objects and active galactic nuclei jets. Mon. Not. R. Astron. Soc. 339, 1223–1236 (2003).

    Article  ADS  Google Scholar 

  93. 93.

    Fender, R. P., Belloni, T. M. & Gallo, E. Towards a unified model for black hole X-ray binary jets. Mon. Not. R. Astron. Soc. 355, 1105–1118 (2004).

    Article  ADS  Google Scholar 

  94. 94.

    Falcke, H., Körding, E. & Markoff, S. A scheme to unify low-power accreting black holes. Jet-dominated accretion flows and the radio/X-ray correlation. Astron. Astrophys. 414, 895–903 (2004).

    Article  ADS  Google Scholar 

  95. 95.

    Körding, E., Falcke, H. & Corbel, S. Refining the fundamental plane of accreting black holes. Astron. Astrophys. 456, 439–450 (2006).

    Article  ADS  MATH  Google Scholar 

  96. 96.

    Russell, D. M. et al. Testing the jet quenching paradigm with an ultradeep observation of a steadily soft state black hole. Astrophys. J. Lett. 739, L19 (2011).

    Article  ADS  Google Scholar 

  97. 97.

    Belloni, T., Méndez, M., King, A. R., van der Klis, M. & van Paradijs, J. A unified model for the spectral variability in GRS 1915+105. Astrophys. J. Lett. 488, L109–L112 (1997).

    Article  ADS  Google Scholar 

  98. 98.

    Marscher, A. P. et al. Observational evidence for the accretion-disk origin for a radio jet in an active galaxy. Nature 417, 625–627 (2002).

    Article  ADS  Google Scholar 

  99. 99.

    Chatterjee, R. et al. Disk-jet connection in the radio galaxy 3C 120. Astrophys. J. 704, 1689–1703 (2009).

    Article  ADS  Google Scholar 

  100. 100.

    Wrobel, J. M. Photometric variability and astrometric stability of the radio continuum nucleus in the Seyfert Galaxy NGC 5548. Astrophys. J. 531, 716–726 (2000).

    Article  ADS  Google Scholar 

  101. 101.

    Barvainis, R., Lehár, J., Birkinshaw, M., Falcke, H. & Blundell, K. M. Radio variability of radio-quiet and radio-loud quasars. Astrophys. J. 618, 108–122 (2005).

    Article  ADS  Google Scholar 

  102. 102.

    Mundell, C. G., Ferruit, P., Nagar, N. & Wilson, A. S. Radio variability in Seyfert nuclei. Astrophys. J. 703, 802–815 (2009).

    Article  ADS  Google Scholar 

  103. 103.

    Baldi, R. D., Behar, E., Laor, A. & Horesh, A. Milimetre-band variability of the radio-quiet nucleus of NGC 7469. Mon. Not. R. Astron. Soc. 454, 4277–4281 (2015).

    Article  ADS  Google Scholar 

  104. 104.

    Bell, M. E. et al. X-ray and radio variability in the low-luminosity active galactic nucleus NGC 7213. Mon. Not. R. Astron. Soc. 411, 402–410 (2011).

    Article  ADS  Google Scholar 

  105. 105.

    King, A. L. et al. A distinctive disk-jet coupling in the lowest-mass Seyfert, NGC 4395. Astrophys. J. Lett. 774, L25 (2013).

    Article  ADS  Google Scholar 

  106. 106.

    Jones, S. et al. Radio and X-ray variability in the Seyfert galaxy NGC 4051. Mon. Not. R. Astron. Soc. 412, 2641–2652 (2011).

    Article  ADS  Google Scholar 

  107. 107.

    Jones, S., McHardy, I. & Maccarone, T. J. A comprehensive long-term study of the radio and X-ray variability of NGC 4051 paper II. Mon. Not. R. Astron. Soc. 465, 1336–1347 (2017).

    Article  ADS  Google Scholar 

  108. 108.

    Markoff, S., Falcke, H. & Fender, R. A jet model for the broadband spectrum of XTE J1118+480. Synchrotron emission from radio to X-rays in the low/hard spectral state. Astron. Astrophys. 372, L25–L28 (2001).

    Article  ADS  Google Scholar 

  109. 109.

    Yuan, F., Markoff, S. & Falcke, H. A jet-ADAF model for Sgr A*. Astron. Astrophys. 383, 854–863 (2002).

    Article  ADS  Google Scholar 

  110. 110.

    Heinz, S. & Sunyaev, R. A. The non-linear dependence of flux on black hole mass and accretion rate in core-dominated jets. Mon. Not. R. Astron. Soc. 343, L59–L64 (2003).

    Article  ADS  Google Scholar 

  111. 111.

    Merloni, A., Heinz, S. & di Matteo, T. A Fundamental plane of black hole activity. Mon. Not. R. Astron. Soc. 345, 1057–1076 (2003).

    Article  ADS  Google Scholar 

  112. 112.

    Plotkin, R. M., Markoff, S., Kelly, B. C., Körding, E. & Anderson, S. F. Using the fundamental plane of black hole activity to distinguish X-ray processes from weakly accreting black holes. Mon. Not. R. Astron. Soc. 419, 267–286 (2012).

    Article  ADS  Google Scholar 

  113. 113.

    Tobin, J. J. et al. The VLA Nascent Disk and Multiplicity (VANDAM) Survey of Perseus protostars. Resolving the sub-arcsecond binary system in NGC 1333 IRAS2A. Astrophys. J. 798, 61 (2015).

    Article  ADS  Google Scholar 

  114. 114.

    Osorio, M. et al. Star formation under the outflow: the discovery of a non-thermal jet from OMC-2 FIR 3 and its relationship to the deeply embedded FIR 4 protostar. Astrophys. J. 840, 36 (2017).

    Article  ADS  Google Scholar 

  115. 115.

    Bally, J. Protostellar outflows. Annu. Rev. Astron. Astrophys. 54, 491–528 (2016).

    Article  ADS  Google Scholar 

  116. 116.

    Körding, E. et al. A transient radio jet in an erupting dwarf nova. Science 320, 1318–1320 (2008).

    Article  ADS  Google Scholar 

  117. 117.

    Roberts, T. P. X-ray observations of ultraluminous X-ray sources. Astrophys. Space Sci. 311, 203–212 (2007).

    Article  ADS  Google Scholar 

  118. 118.

    Cseh, D. et al. The evolution of a jet ejection of the ultraluminous X-ray source Holmberg II X-1. Mon. Not. R. Astron. Soc. 452, 24–31 (2015).

    Article  ADS  Google Scholar 

  119. 119.

    Dai, L., McKinney, J. C., Roth, N., Ramirez-Ruiz, E. & Miller, M. C. A unified model for tidal disruption events. Astrophys. J. Lett. 859, L20 (2018).

    Article  ADS  Google Scholar 

  120. 120.

    Bloom, J. S. et al. A possible relativistic jetted outburst from a massive black hole fed by a tidally disrupted star. Science 333, 203–206 (2011).

    Article  ADS  Google Scholar 

  121. 121.

    van Velzen, S. et al. A radio jet from the optical and x-ray bright stellar tidal disruption flare ASASSN-14li. Science 351, 62–65 (2016).

    Article  ADS  Google Scholar 

  122. 122.

    Pasham, D. R. & van Velzen, S. Discovery of a time lag between the soft X-ray and radio emission of the tidal disruption flare ASASSN-14li: evidence for linear disk-jet coupling. Astrophys. J. 856, 1 (2018).

    Article  ADS  Google Scholar 

  123. 123.

    Mattila, S. et al. A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger. Science 361, 482–485 (2018).

    ADS  Google Scholar 

  124. 124.

    Bontempi, P., Giroletti, M., Panessa, F., Orienti, M. & Doi, A. Physical properties of the nuclear region in Seyfert galaxies derived from observations with the European VLBI Network. Mon. Not. R. Astron. Soc. 426, 588–594 (2012).

    Article  ADS  Google Scholar 

  125. 125.

    Giroletti, M., Taylor, G. B. & Giovannini, G. The two-sided parsec-scale structure of the low-luminosity active galactic nucleus in NGC 4278. Astrophys. J. 622, 178–186 (2005).

    Article  ADS  Google Scholar 

  126. 126.

    Veilleux, S., Cecil, G. & Bland-Hawthorn, J. Galactic winds. Annu. Rev. Astron. Astrophys. 43, 769–826 (2005).

    Article  ADS  Google Scholar 

  127. 127.

    Harrison, C. M. et al. AGN outflows and feedback twenty years on. Nat. Astron. 2, 198–205 (2018).

    Article  ADS  Google Scholar 

  128. 128.

    Laor, A., Baldi, R. D. & Behar, E. What drives the radio slopes in radio-quiet quasars? Mon. Not. R. Astron. Soc. 482, 5513–5523 (2019).

    Article  ADS  Google Scholar 

  129. 129.

    Merloni, A. & Fabian, A. C. Coronal outflow dominated accretion discs: a new possibility for low-luminosity black holes? Mon. Not. R. Astron. Soc. 332, 165–175 (2002).

    Article  ADS  Google Scholar 

  130. 130.

    Liu, T., Wang, J.-X., Yang, H., Zhu, F.-F. & Zhou, Y.-Y. Are X-ray emitting coronae around supermassive black holes outflowing? Astrophys. J. 783, 106 (2014).

    Article  ADS  Google Scholar 

  131. 131.

    Pérez-Torres, M. A., Romero-Cañizales, C., Alberdi, A. & Polatidis, A. An extremely prolific supernova factory in the buried nucleus of the starburst galaxy IC 694. Astrophys. J. Lett. 507, L17–L20 (2009).

    Article  ADS  Google Scholar 

  132. 132.

    Corbel, S. et al. Formation of the compact jets in the black hole GX 339-4. Mon. Not. R. Astron. Soc. 431, L107–L111 (2013).

    Article  ADS  Google Scholar 

  133. 133.

    van Haarlem, M. P. et al. LOFAR: the LOw-Frequency ARray. Astron. Astrophys. 556, A2 (2013).

    Article  Google Scholar 

  134. 134.

    Carilli, C. In Proc. Advancing Astrophysics with the Square Kilometre Array (AASKA14) 171 (Proceedings of Science, 2015).

  135. 135.

    Gurvits, L. I. In 42nd COSPAR Scientific Assembly abstr. E1.8-21-18 (COSPAR, 2018).

  136. 136.

    Braun, R. et al. Anticipated SKA1 Science Performance SKA-TEL-SKO-0000818 (SKA, 2017);

  137. 137.

    Murphy, E. et al. In Proc. Advancing Astrophysics with the Square Kilometre Array (AASKA14) 85 (Proceedings of Science, 2015).

  138. 138.

    Paragi, Z. et al. In Proc. Advancing Astrophysics with the Square Kilometre Array (AASKA14) 143 (Proceedings of Science, 2015).

  139. 139.

    Pedlar, A. et al. The radio nucleus of NGC4151 at 5-GHz and 8-GHz. Mon. Not. R. Astron. Soc. 263, 471 (1993).

    Article  ADS  Google Scholar 

  140. 140.

    Williams, D. R. A. et al. Radio jets in NGC 4151: where eMERLIN meets HST. Mon. Not. R. Astron. Soc. 472, 3842–3853 (2017).

    Article  ADS  Google Scholar 

  141. 141.

    Mundell, C. G., Wrobel, J. M., Pedlar, A. & Gallimore, J. F. The nuclear regions of the Seyfert Galaxy NGC 4151: parsec-scale H i absorption and a remarkable radio jet. Astrophys. J. 583, 192–204 (2003).

    Article  ADS  Google Scholar 

  142. 142.

    Olsson, E., Aalto, S., Thomasson, M. & Beswick, R. Star-formation in the central kpc of the starburst/LINER galaxy NGC 1614. Astron. Astrophys. 513, A11 (2010).

    Article  ADS  Google Scholar 

  143. 143.

    Herrero-Illana, R. et al. No AGN evidence in NGC 1614 from deep radio VLBI observations. Mon. Not. R. Astron. Soc. 470, L112–L116 (2017).

    Article  ADS  Google Scholar 

  144. 144.

    Hardcastle, M. J. & Looney, L. W. The properties of powerful radio sources at 90 GHz. Mon. Not. R. Astron. Soc. 388, 176–186 (2008).

    Article  ADS  Google Scholar 

  145. 145.

    Cotton, W. D. et al. 90 GHz Observations of M87 and Hydra A. Astrophys. J. 701, 1872–1879 (2009).

    Article  ADS  Google Scholar 

  146. 146.

    Fender, R. P., Pooley, G. G., Durouchoux, P., Tilanus, R. P. J. & Brocksopp, C. The very flat radio-millimetre spectrum of Cygnus X-1. Mon. Not. R. Astron. Soc. 312, 853–858 (2000).

    Article  ADS  Google Scholar 

  147. 147.

    Berger, E. et al. Radio monitoring of the tidal disruption event swift J164449.3+573451. I. Jet energetics and the pristine parsec-scale environment of a supermassive black hole. Astrophys. J. 748, 36 (2012).

    Article  ADS  Google Scholar 

  148. 148.

    Yuan, Q., Wang, Q. D., Lei, W.-H., Gao, H. & Zhang, B. Catching jetted tidal disruption events early in millimetre. Mon. Not. R. Astron. Soc. 461, 3375–3384 (2016).

    Article  ADS  Google Scholar 

  149. 149.

    Díaz Trigo, M. et al. ALMA observations of 4U 1728–34 and 4U 1820–30: first detection of neutron star X-ray binaries at 300 GHz. Astron. Astrophys. 600, A8 (2017).

    Article  Google Scholar 

  150. 150.

    Díaz Trigo, M. et al. The evolving jet spectrum of the neutron star X-ray binary Aql X-1 in transitional states during its 2016 outburst. Astron. Astrophys. 616, A23 (2018).

    Article  Google Scholar 

  151. 151.

    Tetarenko, A. J. et al. NOEMA sub-millimetre detection of MAXI J1820+070. The Astronomer’s Telegram 11440 (2018).

Download references


This review is the result of several fruitful discussions raised during the meeting ‘The radio–X-ray connection in accreting objects’ (21–25 May 2018, Tenuta Monacelle, Monopoli, Italy). The authors thank all the participants of the meeting: J. Bally, N. Brandt, G. Brunetti, A. Capetti, S. Corbel, L. Dai, J. Davelaar, B. De Marco, J. Ferreira, J. Gomez, M. Hardcastle, Y. Inuoe, M. Jarvis, P. Kharb, A. Kimball (in particular for her original idea that inspired Fig. 2), M. Koss, C. Mundell, D. Pasham, U. Peretz, M. Perucho, R. Plotkin, I. Prandoni, J. Poutanen, T. Roberts, D. Williams, C. Tadhunter, S. Tchekhovskoy, F. Ursini, D. Worrall and N. Zakamska. We also thank D. Altamirano, S. Antoniucci, P. Casella, E. Chiaraluce, S. Hoenig, A. Merloni, M. Middleton, M. Pahari, M. Perez-Torres and D. Williams.

Author information



Corresponding author

Correspondence to Francesca Panessa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Astronomy thanks Ann Kapinska and Andrea Merloni for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panessa, F., Baldi, R.D., Laor, A. et al. The origin of radio emission from radio-quiet active galactic nuclei. Nat Astron 3, 387–396 (2019).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing