Article | Published:

Rotational disruption of dust grains by radiative torques in strong radiation fields


Massive stars, supernovae, and kilonovae are among the most luminous radiation sources in the Universe. Observations usually show near- to mid-infrared (NIR–MIR, λ ≈ 1–5 μm) emission excess from H ii regions around young massive star clusters. Early-phase observations in optical-to-NIR wavelengths of type Ia supernovae also reveal unusual properties of dust extinction and dust polarization. The most common explanation for such NIR−MIR excess and unusual dust properties is the predominance of small grains (size a 0.05 μm) relative to large grains (a 0.1 μm) in the local environment of these strong radiation sources. However, why small grains might be predominant in these environments is unclear. Here we report a mechanism of dust destruction based on centrifugal stress within extremely fast-rotating grains spun-up by radiative torques, which we term radiative torque disruption (RATD). We find that RATD can disrupt large grains located within a distance of about a parsec from a massive star of luminosity L ≈ 104L, where L is the solar luminosity, or from a supernova. This disruption effect increases the abundance of small grains relative to large grains and successfully reproduces the observed NIR−MIR excess and anomalous dust extinction/polarization. We apply the RATD mechanism for kilonovae and find that dust within about 0.1 parsec would be dominated by small grains. Small grains produced by RATD can also explain the steep far-ultraviolet rise in extinction curves towards starburst and high-redshift galaxies, and the decrease of the escape fraction of Lyman α photons from H ii regions surrounding young massive star clusters.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Additional information

Journal peer review information: Nature Astronomy thanks Haley Gomez, Karri Muinonen, Joonas Herranen and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Reines, A. E., Johnson, K. E. & Hunt, L. K. A new view of the super star clusters in the low-metallicity galaxy SBS 0335-052. Astrophys. J. 136, 1415–1426 (2008).

  2. 2.

    Relaño, M. et al. Spectral energy distributions of H ii regions in M 33 (HerM33es). Astron. Astrophys. 552, A140 (2013).

  3. 3.

    Martnez-González, S., Wünsch, R. & Palouš, J. Can dust injected by SNe explain the NIR-MIR excess in young massive stellar clusters? Astrophys. J. 843, 95 (2017).

  4. 4.

    Draine, B. T. & Salpeter, E. E. On the physics of dust grains in hot gas. Astrophys. J. 231, 77–94 (1979).

  5. 5.

    Riess, A. G. et al. Observational evidence from supernovae for an accelerating Universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

  6. 6.

    Nobili, S. & Goobar, A. The colour-lightcurve shape relation of type Ia supernovae and the reddening law. Astron. Astrophys. 487, 19–31 (2008).

  7. 7.

    Burns, C. R. et al. The Carnegie supernova project: intrinsic colors of type Ia supernovae. Astrophys. J. 789, 32 (2014).

  8. 8.

    Draine, B. T. Interstellar dust grains. Annu. Rev. Astron. Astrophys. 41, 241–289 (2003).

  9. 9.

    Kawabata, K. S. et al. Optical and near-infrared polarimetry of highly reddened type Ia Supernova 2014J: peculiar properties of dust in M82. Astrophys. J. 795, L4 (2014).

  10. 10.

    Patat, F. et al. Properties of extragalactic dust inferred from linear polarimetry of type Ia supernovae. Astron. Astrophys. 577, A53 (2015).

  11. 11.

    Nozawa, T. Properties of interstellar dust responsible for extinction laws with unusually low total-to-selective extinction ratios of RV = 1–2. Planet. Space Sci. 133, 36–46 (2016).

  12. 12.

    Hoang, T. Properties and alignment of interstellar dust grains toward type Ia supernovae with anomalous polarization curves. Astrophys. J. 836, 13 (2017).

  13. 13.

    Barlow, M. J. et al. A Herschel PACS and SPIRE study of the dust content of the Cassiopeia a supernova remnant. Astron. Astrophys. 518, L138 (2010).

  14. 14.

    Matsuura, M. et al. Herschel detects a massive dust reservoir in supernova 1987A. Science 333, 1258– (2011).

  15. 15.

    Gomez, H. L. et al. A cool dust factory in the Crab nebula: a Herschel study of the filaments. Astrophys. J. 760, 96 (2012).

  16. 16.

    Chawner, H. et al. A catalogue of Galactic supernova remnants in the far-infrared: revealing ejecta dust in pulsar wind nebulae. Mon. Not. R. Astron. Soc. 483, 70–118 (2018).

  17. 17.

    Morgan, H. L. & Edmunds, M. G. Dust formation in early galaxies. Mon. Not. R. Astron. Soc. 343, 427–442 (2003).

  18. 18.

    Yajima, H., Nagamine, K., Thompson, R. & Choi, J.-H. Dust properties of Lyman-break galaxies in cosmological simulations. Mon. Not. R. Astron. Soc. 439, 3073–3084 (2014).

  19. 19.

    Poznanski, D. et al. Improved standardization of type II-P supernovae: application to an expanded sample. Astrophys. J. 694, 1067–1079 (2009).

  20. 20.

    Olivares, E. F. et al. The standardized candle method for type II Plateau supernovae. Astrophys. J. 715, 833–853 (2010).

  21. 21.

    Temim, T. & Dwek, E. The importance of physical models for deriving dust masses and grain size distributions in supernova ejecta. I. Radiatively heated dust in the Crab nebula. Astrophys. J. 774, 8 (2013).

  22. 22.

    Owen, P. J. & Barlow, M. J. The dust and gas content of the Crab nebula. Astrophys. J. 801, 141 (2015).

  23. 23.

    Gall, C. et al. Rapid formation of large dust grains in the luminous supernova 2010jl. Nature 511, 326–329 (2014).

  24. 24.

    Draine, B. T. & Salpeter, E. E. Destruction mechanisms for interstellar dust. Astrophys. J. 231, 438–455 (1979).

  25. 25.

    Guhathakurta, P. & Draine, B. T. Temperature fluctuations in interstellar grains. I. Computational method and sublimation of small grains. Astrophys. J. 345, 230–244 (1989).

  26. 26.

    Hoang, T., Lazarian, A. & Schlickeiser, R. On origin and destruction of relativistic dust and its implication for ultrahigh energy cosmic rays. Astrophys. J. 806, 255 (2015).

  27. 27.

    Li, L.-X. & Paczyński, B. Transient events from neutron star mergers. Astrophys. J. 507, L59–L62 (1998).

  28. 28.

    Tanaka, M. et al. Kilonova from post-merger ejecta as an optical and near-Infrared counterpart of GW170817. Publ. Astron. Soc. Jpn 69, 102 (2017).

  29. 29.

    Gall, C., Hjorth, J., Rosswog, S., Tanvir, N. R. & Levan, A. J. Lanthanides or dust in kilonovae: lessons learned from GW170817. Astrophys. J. Lett. 849, L19 (2017).

  30. 30.

    Dolginov, A. Z. & Mitrophanov, I. G. Orientation of cosmic dust grains. Astrophys. Space Sci. 43, 291–317 (1976).

  31. 31.

    Draine, B. T. & Weingartner, J. C. Radiative torques on interstellar grains. I. Superthermal spin-up. Astrophys. J. 470, 551 (1996).

  32. 32.

    Lazarian, A. & Hoang, T. Radiative torques: analytical model and basic properties. Mon. Not. R. Astron. Soc. 378, 910–946 (2007).

  33. 33.

    Mathis, J. S., Mezger, P. G. & Panagia, N. Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds. Astron. Astrophys. 128, 212–229 (1983).

  34. 34.

    Hoang, T. & Lazarian, A. Radiative torques alignment in the presence of pinwheel torques. Astrophys. J. 695, 1457–1476 (2009).

  35. 35.

    Stephens, I. W. et al. Spitzer observations of dust emission from H ii regions in the Large Magellanic Cloud. Astrophys. J. 784, 147 (2014).

  36. 36.

    Lebouteiller, V., Brandl, B., Bernard-Salas, J., Devost, D. & Houck, J. R. PAH strength and the interstellar radiation field around the massive young cluster NGC 3603. Astrophys. J. 665, 390–401 (2007).

  37. 37.

    Relaño, M. et al. Spatially resolving the dust properties and submillimetre excess in M 33. Preprint at (2018).

  38. 38.

    Folatelli, G. et al. The Carnegie supernova project: analysis of the first sample of low-redshift type-Ia supernovae. Astron. J. 139, 120–144 (2010).

  39. 39.

    Phillips, M. M. et al. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na i absorption. Astrophys. J. 779, 38 (2013).

  40. 40.

    Gao, J., Jiang, B. W., Li, A., Li, J. & Wang, X. Physical dust models for the extinction toward supernova 2014J in M82. Astrophys. J. Lett. 807, L26 (2015).

  41. 41.

    Wang, X. et al. Optical and near-infrared observations of the highly reddened, rapidly expanding type Ia supernova SN 2006X in M100. Astrophys. J. 675, 626–643 (2008).

  42. 42.

    Bulla, M., Goobar, A. & Dhawan, S. Shedding light on the type Ia supernova extinction puzzle: dust location found. Mon. Not. R. Astron. Soc. 479, 3663–3674 (2018).

  43. 43.

    Metzger, B. D. & Berger, E. What is the most promising electromagnetic counterpart of a neutron star binary merger? Astrophys. J. 746, 48 (2012).

  44. 44.

    Levan, A. J. et al. The environment of the binary neutron star merger GW170817. Astrophys. J. Lett. 848, L28 (2017).

  45. 45.

    Covino, S. et al. The unpolarized macronova associated with the gravitational wave event GW 170817. Nat. Astron. 1, 791–794 (2017).

  46. 46.

    Gordon, K. D., Calzetti, D. & Witt, A. N. Dust in starburst galaxies. Astrophys. J. 487, 625 (1997).

  47. 47.

    Yang, H. et al. Lyα profile, dust, and prediction of Lyα escape fraction in green pea galaxies. Astrophys. J. 844, 171 (2017).

  48. 48.

    Schady, P. et al. The dust extinction curves of gamma-ray burst host galaxies. Astron. Astrophys. 537, 15 (2012).

  49. 49.

    Hopkins, P. F. et al. Dust reddening in Sloan Digital Sky Survey quasars. Astron. J. 128, 1112–1123 (2004).

  50. 50.

    Reddy, N. A. et al. The HDUV survey: a revised assessment of the relationship between UV slope and dust attenuation for high-redshift galaxies. Astrophys. J. 853, 56 (2018).

  51. 51.

    Abbas, M. M. et al. Laboratory experiments on rotation and alignment of the analogs of interstellar dust grains by radiation. Astrophys. J. 614, 781–795 (2004).

  52. 52.

    Hoang, T. & Lazarian, A. Radiative torque alignment: essential physical processes. Mon. Not. R. Astron. Soc. 388, 117–143 (2008).

  53. 53.

    Andersson, B.-G., Lazarian, A. & Vaillancourt, J. E. Interstellar dust grain alignment. Annu. Rev. Astron. Astrophys. 53, 501–539 (2015).

  54. 54.

    Lazarian, A., Andersson, B.-G. & Hoang, T. in Polarimetry of Stars and Planetary Systems (eds Kolokolova, L., Hough, J. & Levasseur-Regourd, A.-C.) 81 (Cambridge Univ. Press, 2015).

  55. 55.

    Herranen, J., Lazarian, A. & Hoang, T. Radiative torques of irregular grains: describing the alignment of a grain ensemble. Preprint at (2018).

  56. 56.

    Hoang, T. & Lazarian, A. Grain alignment by radiative torques in special conditions and implications. Mon. Not. R. Astron. Soc. 438, 680–703 (2014).

  57. 57.

    Draine, B. T. & Lazarian, A. Electric dipole radiation from spinning dust grains. Astrophys. J. 508, 157–179 (1998).

  58. 58.

    Draine, B. T. & Weingartner, J. C. Radiative torques on interstellar grains. II. Grain alignment. Astrophys. J. 480, 633 (1997).

  59. 59.

    Purcell, E. M. Suprathermal rotation of interstellar grains. Astrophys. J. 231, 404–416 (1979).

  60. 60.

    Portegies Zwart, S. F., McMillan, S. L. W. & Gieles, M. Young massive star clusters. Annu. Rev. Astron. Astrophys. 48, 431–493 (2010).

  61. 61.

    Brown, P. J. et al. Ultraviolet light curves of supernovae with the Swift ultraviolet/optical telescope. Astron. J. 137, 4517–4525 (2009).

  62. 62.

    Zheng, W., Kelly, P. L. & Filippenko, A. V. An empirical fitting method for type IA supernova light curves. II. Estimating the first-light time and rise time. Astrophys. J. 848, 66 (2017).

  63. 63.

    Riess, A. G. et al. The rise time of nearby type IA supernovae. Astron. J. 118, 2675–2688 (1999).

  64. 64.

    Dastidar, R. et al. SN 2015ba: a type IIP supernova with a long plateau. Mon. Not. R. Astron. Soc. 479, 2421–2442 (2018).

  65. 65.

    Gal-Yam, A. Luminous supernovae. Science 337, 927 (2012).

  66. 66.

    Dong, S. et al. ASASSN-15lh: a highly super-luminous supernova. Science 351, 257–260 (2016).

  67. 67.

    Metzger, B. D. et al. Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon. Not. R. Astron. Soc. 406, 2650–2662 (2010).

  68. 68.

    Silsbee, K. & Draine, B. T. Radiation pressure on fluffy submicron-sized grains. Astrophys. J. 818, 133 (2016).

  69. 69.

    Hoang, T. & Tram, L. N. Rotational desorption of ice mantles and complex molecules from suprathermally rotating dust grains around young stellar objects. Preprint at (2019).

  70. 70.

    Draine, B. T. et al. Dust masses, PAH abundances, and starlight intensities in the SINGS galaxy sample. Astrophys. J. 663, 866–894 (2007).

  71. 71.

    Mathis, J. S. & Whiffen, G. Composite interstellar grains. Astrophys. J. 341, 808–822 (1989).

  72. 72.

    Hoang, T. Relativistic gas drag on dust grains and implications. Astrophys. J. 847, 77 (2017).

  73. 73.

    Waxman, E. & Draine, B. T. Dust sublimation by gamma-ray bursts and its implications. Astrophys. J. 537, 796–802 (2000).

  74. 74.

    Scoville, N. & Norman, C. Stellar contrails in quasi-stellar objects: the origin of broad absorption lines. Astrophys. J. 451, 510 (1995).

  75. 75.

    Hayes, M. et al. Escape of about five per cent of Lyman photons from high-redshift star-forming galaxies. Nature 464, 562–565 (2010).

  76. 76.

    Atek, H. et al. Influence of physical galaxy properties on Lyα escape in star-forming galaxies. Astron. Astrophys. 561, A89 (2014).

  77. 77.

    Ahn, S.-H. Singly peaked asymmetric Lyα from starburst galaxies. Astrophys. J. 601, L25–L28 (2004).

  78. 78.

    Ahn, S.-H. Environment of the gamma-ray burst GRB 971214: a giant H ii region surrounded by a galactic supershell. Astrophys. J. 530, L9–L12 (2000).

Download references


We thank B.-G. Andersson, M. Bulla, B. Burkhart, B. T. Draine, A. Goobar, V. Guillet, A. Lazarian, P. Lesaffre, R. Smith, and W. Zheng for comments and discussions. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2017R1D1A1B03035359).

Author information

All authors contributed to the work presented in this paper. T.H. formulated the problem, carried out analytical calculations, and led the writing of the manuscript. L.N.T. carried out numerical calculations for supernovae and kilonovae. H.L. carried out calculations for massive stars. S.H.A. contributed to the discussion of the RATD mechanism on Lyα photon escape.

Competing interests

The authors declare no competing interests.

Correspondence to Thiem Hoang.

Supplementary information

  1. Supplementary Information

    Supplementary text, Supplementary references, Supplementary Figs. 1–2, Supplementary Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark
Fig. 1: Grain disruption size and disruption time versus cloud distance from the central source for massive stars and YMSCs of different luminosity, assuming grain tensile strength Smax = 109 erg cm−3.
Fig. 2: Grain disruption size versus cloud distance for the time-varying radiation sources, assuming different tensile strength Smax.
Fig. 3: Disruption time versus grain size for the time-varying radiation sources, assuming different tensile strength Smax.
Fig. 4: Schematic illustration for the properties of dust grains in a cloud surrounding an intense radiation source modified by RATD, assuming that original dust grains have the same size.