Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rotational disruption of dust grains by radiative torques in strong radiation fields


Massive stars, supernovae, and kilonovae are among the most luminous radiation sources in the Universe. Observations usually show near- to mid-infrared (NIR–MIR, λ ≈ 1–5 μm) emission excess from H ii regions around young massive star clusters. Early-phase observations in optical-to-NIR wavelengths of type Ia supernovae also reveal unusual properties of dust extinction and dust polarization. The most common explanation for such NIR−MIR excess and unusual dust properties is the predominance of small grains (size a 0.05 μm) relative to large grains (a 0.1 μm) in the local environment of these strong radiation sources. However, why small grains might be predominant in these environments is unclear. Here we report a mechanism of dust destruction based on centrifugal stress within extremely fast-rotating grains spun-up by radiative torques, which we term radiative torque disruption (RATD). We find that RATD can disrupt large grains located within a distance of about a parsec from a massive star of luminosity L ≈ 104L, where L is the solar luminosity, or from a supernova. This disruption effect increases the abundance of small grains relative to large grains and successfully reproduces the observed NIR−MIR excess and anomalous dust extinction/polarization. We apply the RATD mechanism for kilonovae and find that dust within about 0.1 parsec would be dominated by small grains. Small grains produced by RATD can also explain the steep far-ultraviolet rise in extinction curves towards starburst and high-redshift galaxies, and the decrease of the escape fraction of Lyman α photons from H ii regions surrounding young massive star clusters.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Grain disruption size and disruption time versus cloud distance from the central source for massive stars and YMSCs of different luminosity, assuming grain tensile strength Smax = 109 erg cm−3.
Fig. 2: Grain disruption size versus cloud distance for the time-varying radiation sources, assuming different tensile strength Smax.
Fig. 3: Disruption time versus grain size for the time-varying radiation sources, assuming different tensile strength Smax.
Fig. 4: Schematic illustration for the properties of dust grains in a cloud surrounding an intense radiation source modified by RATD, assuming that original dust grains have the same size.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Reines, A. E., Johnson, K. E. & Hunt, L. K. A new view of the super star clusters in the low-metallicity galaxy SBS 0335-052. Astrophys. J. 136, 1415–1426 (2008).

    ADS  Google Scholar 

  2. 2.

    Relaño, M. et al. Spectral energy distributions of H ii regions in M 33 (HerM33es). Astron. Astrophys. 552, A140 (2013).

    Article  Google Scholar 

  3. 3.

    Martnez-González, S., Wünsch, R. & Palouš, J. Can dust injected by SNe explain the NIR-MIR excess in young massive stellar clusters? Astrophys. J. 843, 95 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    Draine, B. T. & Salpeter, E. E. On the physics of dust grains in hot gas. Astrophys. J. 231, 77–94 (1979).

    ADS  Article  Google Scholar 

  5. 5.

    Riess, A. G. et al. Observational evidence from supernovae for an accelerating Universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).

    ADS  Article  Google Scholar 

  6. 6.

    Nobili, S. & Goobar, A. The colour-lightcurve shape relation of type Ia supernovae and the reddening law. Astron. Astrophys. 487, 19–31 (2008).

    ADS  Article  Google Scholar 

  7. 7.

    Burns, C. R. et al. The Carnegie supernova project: intrinsic colors of type Ia supernovae. Astrophys. J. 789, 32 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Draine, B. T. Interstellar dust grains. Annu. Rev. Astron. Astrophys. 41, 241–289 (2003).

    ADS  Article  Google Scholar 

  9. 9.

    Kawabata, K. S. et al. Optical and near-infrared polarimetry of highly reddened type Ia Supernova 2014J: peculiar properties of dust in M82. Astrophys. J. 795, L4 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Patat, F. et al. Properties of extragalactic dust inferred from linear polarimetry of type Ia supernovae. Astron. Astrophys. 577, A53 (2015).

    Article  Google Scholar 

  11. 11.

    Nozawa, T. Properties of interstellar dust responsible for extinction laws with unusually low total-to-selective extinction ratios of RV = 1–2. Planet. Space Sci. 133, 36–46 (2016).

    ADS  Article  Google Scholar 

  12. 12.

    Hoang, T. Properties and alignment of interstellar dust grains toward type Ia supernovae with anomalous polarization curves. Astrophys. J. 836, 13 (2017).

    ADS  Article  Google Scholar 

  13. 13.

    Barlow, M. J. et al. A Herschel PACS and SPIRE study of the dust content of the Cassiopeia a supernova remnant. Astron. Astrophys. 518, L138 (2010).

    ADS  Article  Google Scholar 

  14. 14.

    Matsuura, M. et al. Herschel detects a massive dust reservoir in supernova 1987A. Science 333, 1258– (2011).

    ADS  Article  Google Scholar 

  15. 15.

    Gomez, H. L. et al. A cool dust factory in the Crab nebula: a Herschel study of the filaments. Astrophys. J. 760, 96 (2012).

    ADS  Article  Google Scholar 

  16. 16.

    Chawner, H. et al. A catalogue of Galactic supernova remnants in the far-infrared: revealing ejecta dust in pulsar wind nebulae. Mon. Not. R. Astron. Soc. 483, 70–118 (2018).

    ADS  Article  Google Scholar 

  17. 17.

    Morgan, H. L. & Edmunds, M. G. Dust formation in early galaxies. Mon. Not. R. Astron. Soc. 343, 427–442 (2003).

    ADS  Article  Google Scholar 

  18. 18.

    Yajima, H., Nagamine, K., Thompson, R. & Choi, J.-H. Dust properties of Lyman-break galaxies in cosmological simulations. Mon. Not. R. Astron. Soc. 439, 3073–3084 (2014).

    ADS  Article  Google Scholar 

  19. 19.

    Poznanski, D. et al. Improved standardization of type II-P supernovae: application to an expanded sample. Astrophys. J. 694, 1067–1079 (2009).

    ADS  Article  Google Scholar 

  20. 20.

    Olivares, E. F. et al. The standardized candle method for type II Plateau supernovae. Astrophys. J. 715, 833–853 (2010).

    ADS  Article  Google Scholar 

  21. 21.

    Temim, T. & Dwek, E. The importance of physical models for deriving dust masses and grain size distributions in supernova ejecta. I. Radiatively heated dust in the Crab nebula. Astrophys. J. 774, 8 (2013).

    ADS  Article  Google Scholar 

  22. 22.

    Owen, P. J. & Barlow, M. J. The dust and gas content of the Crab nebula. Astrophys. J. 801, 141 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Gall, C. et al. Rapid formation of large dust grains in the luminous supernova 2010jl. Nature 511, 326–329 (2014).

    ADS  Article  Google Scholar 

  24. 24.

    Draine, B. T. & Salpeter, E. E. Destruction mechanisms for interstellar dust. Astrophys. J. 231, 438–455 (1979).

    ADS  Article  Google Scholar 

  25. 25.

    Guhathakurta, P. & Draine, B. T. Temperature fluctuations in interstellar grains. I. Computational method and sublimation of small grains. Astrophys. J. 345, 230–244 (1989).

    ADS  Article  Google Scholar 

  26. 26.

    Hoang, T., Lazarian, A. & Schlickeiser, R. On origin and destruction of relativistic dust and its implication for ultrahigh energy cosmic rays. Astrophys. J. 806, 255 (2015).

    ADS  Article  Google Scholar 

  27. 27.

    Li, L.-X. & Paczyński, B. Transient events from neutron star mergers. Astrophys. J. 507, L59–L62 (1998).

    ADS  Article  Google Scholar 

  28. 28.

    Tanaka, M. et al. Kilonova from post-merger ejecta as an optical and near-Infrared counterpart of GW170817. Publ. Astron. Soc. Jpn 69, 102 (2017).

    ADS  Google Scholar 

  29. 29.

    Gall, C., Hjorth, J., Rosswog, S., Tanvir, N. R. & Levan, A. J. Lanthanides or dust in kilonovae: lessons learned from GW170817. Astrophys. J. Lett. 849, L19 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Dolginov, A. Z. & Mitrophanov, I. G. Orientation of cosmic dust grains. Astrophys. Space Sci. 43, 291–317 (1976).

    ADS  Article  Google Scholar 

  31. 31.

    Draine, B. T. & Weingartner, J. C. Radiative torques on interstellar grains. I. Superthermal spin-up. Astrophys. J. 470, 551 (1996).

    ADS  Article  Google Scholar 

  32. 32.

    Lazarian, A. & Hoang, T. Radiative torques: analytical model and basic properties. Mon. Not. R. Astron. Soc. 378, 910–946 (2007).

    ADS  Article  Google Scholar 

  33. 33.

    Mathis, J. S., Mezger, P. G. & Panagia, N. Interstellar radiation field and dust temperatures in the diffuse interstellar matter and in giant molecular clouds. Astron. Astrophys. 128, 212–229 (1983).

    ADS  Google Scholar 

  34. 34.

    Hoang, T. & Lazarian, A. Radiative torques alignment in the presence of pinwheel torques. Astrophys. J. 695, 1457–1476 (2009).

    ADS  Article  Google Scholar 

  35. 35.

    Stephens, I. W. et al. Spitzer observations of dust emission from H ii regions in the Large Magellanic Cloud. Astrophys. J. 784, 147 (2014).

    ADS  Article  Google Scholar 

  36. 36.

    Lebouteiller, V., Brandl, B., Bernard-Salas, J., Devost, D. & Houck, J. R. PAH strength and the interstellar radiation field around the massive young cluster NGC 3603. Astrophys. J. 665, 390–401 (2007).

    ADS  Article  Google Scholar 

  37. 37.

    Relaño, M. et al. Spatially resolving the dust properties and submillimetre excess in M 33. Preprint at (2018).

  38. 38.

    Folatelli, G. et al. The Carnegie supernova project: analysis of the first sample of low-redshift type-Ia supernovae. Astron. J. 139, 120–144 (2010).

    ADS  Article  Google Scholar 

  39. 39.

    Phillips, M. M. et al. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na i absorption. Astrophys. J. 779, 38 (2013).

    ADS  Article  Google Scholar 

  40. 40.

    Gao, J., Jiang, B. W., Li, A., Li, J. & Wang, X. Physical dust models for the extinction toward supernova 2014J in M82. Astrophys. J. Lett. 807, L26 (2015).

    ADS  Article  Google Scholar 

  41. 41.

    Wang, X. et al. Optical and near-infrared observations of the highly reddened, rapidly expanding type Ia supernova SN 2006X in M100. Astrophys. J. 675, 626–643 (2008).

    ADS  Article  Google Scholar 

  42. 42.

    Bulla, M., Goobar, A. & Dhawan, S. Shedding light on the type Ia supernova extinction puzzle: dust location found. Mon. Not. R. Astron. Soc. 479, 3663–3674 (2018).

    ADS  Article  Google Scholar 

  43. 43.

    Metzger, B. D. & Berger, E. What is the most promising electromagnetic counterpart of a neutron star binary merger? Astrophys. J. 746, 48 (2012).

    ADS  Article  Google Scholar 

  44. 44.

    Levan, A. J. et al. The environment of the binary neutron star merger GW170817. Astrophys. J. Lett. 848, L28 (2017).

    ADS  Article  Google Scholar 

  45. 45.

    Covino, S. et al. The unpolarized macronova associated with the gravitational wave event GW 170817. Nat. Astron. 1, 791–794 (2017).

    ADS  Article  Google Scholar 

  46. 46.

    Gordon, K. D., Calzetti, D. & Witt, A. N. Dust in starburst galaxies. Astrophys. J. 487, 625 (1997).

    ADS  Article  Google Scholar 

  47. 47.

    Yang, H. et al. Lyα profile, dust, and prediction of Lyα escape fraction in green pea galaxies. Astrophys. J. 844, 171 (2017).

    ADS  Article  Google Scholar 

  48. 48.

    Schady, P. et al. The dust extinction curves of gamma-ray burst host galaxies. Astron. Astrophys. 537, 15 (2012).

    Article  Google Scholar 

  49. 49.

    Hopkins, P. F. et al. Dust reddening in Sloan Digital Sky Survey quasars. Astron. J. 128, 1112–1123 (2004).

    ADS  Article  Google Scholar 

  50. 50.

    Reddy, N. A. et al. The HDUV survey: a revised assessment of the relationship between UV slope and dust attenuation for high-redshift galaxies. Astrophys. J. 853, 56 (2018).

    ADS  Article  Google Scholar 

  51. 51.

    Abbas, M. M. et al. Laboratory experiments on rotation and alignment of the analogs of interstellar dust grains by radiation. Astrophys. J. 614, 781–795 (2004).

    ADS  Article  Google Scholar 

  52. 52.

    Hoang, T. & Lazarian, A. Radiative torque alignment: essential physical processes. Mon. Not. R. Astron. Soc. 388, 117–143 (2008).

    ADS  Article  Google Scholar 

  53. 53.

    Andersson, B.-G., Lazarian, A. & Vaillancourt, J. E. Interstellar dust grain alignment. Annu. Rev. Astron. Astrophys. 53, 501–539 (2015).

    ADS  Article  Google Scholar 

  54. 54.

    Lazarian, A., Andersson, B.-G. & Hoang, T. in Polarimetry of Stars and Planetary Systems (eds Kolokolova, L., Hough, J. & Levasseur-Regourd, A.-C.) 81 (Cambridge Univ. Press, 2015).

  55. 55.

    Herranen, J., Lazarian, A. & Hoang, T. Radiative torques of irregular grains: describing the alignment of a grain ensemble. Preprint at (2018).

  56. 56.

    Hoang, T. & Lazarian, A. Grain alignment by radiative torques in special conditions and implications. Mon. Not. R. Astron. Soc. 438, 680–703 (2014).

    ADS  Article  Google Scholar 

  57. 57.

    Draine, B. T. & Lazarian, A. Electric dipole radiation from spinning dust grains. Astrophys. J. 508, 157–179 (1998).

    ADS  Article  Google Scholar 

  58. 58.

    Draine, B. T. & Weingartner, J. C. Radiative torques on interstellar grains. II. Grain alignment. Astrophys. J. 480, 633 (1997).

    ADS  Article  Google Scholar 

  59. 59.

    Purcell, E. M. Suprathermal rotation of interstellar grains. Astrophys. J. 231, 404–416 (1979).

    ADS  Article  Google Scholar 

  60. 60.

    Portegies Zwart, S. F., McMillan, S. L. W. & Gieles, M. Young massive star clusters. Annu. Rev. Astron. Astrophys. 48, 431–493 (2010).

    ADS  Article  Google Scholar 

  61. 61.

    Brown, P. J. et al. Ultraviolet light curves of supernovae with the Swift ultraviolet/optical telescope. Astron. J. 137, 4517–4525 (2009).

    ADS  Article  Google Scholar 

  62. 62.

    Zheng, W., Kelly, P. L. & Filippenko, A. V. An empirical fitting method for type IA supernova light curves. II. Estimating the first-light time and rise time. Astrophys. J. 848, 66 (2017).

    ADS  Article  Google Scholar 

  63. 63.

    Riess, A. G. et al. The rise time of nearby type IA supernovae. Astron. J. 118, 2675–2688 (1999).

    ADS  Article  Google Scholar 

  64. 64.

    Dastidar, R. et al. SN 2015ba: a type IIP supernova with a long plateau. Mon. Not. R. Astron. Soc. 479, 2421–2442 (2018).

    ADS  Article  Google Scholar 

  65. 65.

    Gal-Yam, A. Luminous supernovae. Science 337, 927 (2012).

    ADS  Article  Google Scholar 

  66. 66.

    Dong, S. et al. ASASSN-15lh: a highly super-luminous supernova. Science 351, 257–260 (2016).

    ADS  Article  Google Scholar 

  67. 67.

    Metzger, B. D. et al. Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon. Not. R. Astron. Soc. 406, 2650–2662 (2010).

    ADS  Article  Google Scholar 

  68. 68.

    Silsbee, K. & Draine, B. T. Radiation pressure on fluffy submicron-sized grains. Astrophys. J. 818, 133 (2016).

    ADS  Article  Google Scholar 

  69. 69.

    Hoang, T. & Tram, L. N. Rotational desorption of ice mantles and complex molecules from suprathermally rotating dust grains around young stellar objects. Preprint at (2019).

  70. 70.

    Draine, B. T. et al. Dust masses, PAH abundances, and starlight intensities in the SINGS galaxy sample. Astrophys. J. 663, 866–894 (2007).

    ADS  Article  Google Scholar 

  71. 71.

    Mathis, J. S. & Whiffen, G. Composite interstellar grains. Astrophys. J. 341, 808–822 (1989).

    ADS  Article  Google Scholar 

  72. 72.

    Hoang, T. Relativistic gas drag on dust grains and implications. Astrophys. J. 847, 77 (2017).

    ADS  Article  Google Scholar 

  73. 73.

    Waxman, E. & Draine, B. T. Dust sublimation by gamma-ray bursts and its implications. Astrophys. J. 537, 796–802 (2000).

    ADS  Article  Google Scholar 

  74. 74.

    Scoville, N. & Norman, C. Stellar contrails in quasi-stellar objects: the origin of broad absorption lines. Astrophys. J. 451, 510 (1995).

    ADS  Article  Google Scholar 

  75. 75.

    Hayes, M. et al. Escape of about five per cent of Lyman photons from high-redshift star-forming galaxies. Nature 464, 562–565 (2010).

    ADS  Article  Google Scholar 

  76. 76.

    Atek, H. et al. Influence of physical galaxy properties on Lyα escape in star-forming galaxies. Astron. Astrophys. 561, A89 (2014).

    Article  Google Scholar 

  77. 77.

    Ahn, S.-H. Singly peaked asymmetric Lyα from starburst galaxies. Astrophys. J. 601, L25–L28 (2004).

    ADS  Article  Google Scholar 

  78. 78.

    Ahn, S.-H. Environment of the gamma-ray burst GRB 971214: a giant H ii region surrounded by a galactic supershell. Astrophys. J. 530, L9–L12 (2000).

    ADS  Article  Google Scholar 

Download references


We thank B.-G. Andersson, M. Bulla, B. Burkhart, B. T. Draine, A. Goobar, V. Guillet, A. Lazarian, P. Lesaffre, R. Smith, and W. Zheng for comments and discussions. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2017R1D1A1B03035359).

Author information




All authors contributed to the work presented in this paper. T.H. formulated the problem, carried out analytical calculations, and led the writing of the manuscript. L.N.T. carried out numerical calculations for supernovae and kilonovae. H.L. carried out calculations for massive stars. S.H.A. contributed to the discussion of the RATD mechanism on Lyα photon escape.

Corresponding author

Correspondence to Thiem Hoang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Astronomy thanks Haley Gomez, Karri Muinonen, Joonas Herranen and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Supplementary references, Supplementary Figs. 1–2, Supplementary Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoang, T., Tram, L.N., Lee, H. et al. Rotational disruption of dust grains by radiative torques in strong radiation fields. Nat Astron 3, 766–775 (2019).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing