Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Accurate mass and radius determinations of a cool subdwarf in an eclipsing binary

Abstract

Cool subdwarfs are metal-poor low-mass stars that formed during the early stages of the evolution of our Galaxy. Because they are relatively rare in the vicinity of the Sun, we know of few cool subdwarfs in the solar neighbourhood, and none for which both the mass and the radius are accurately determined. This hampers our understanding of stars at the low-mass end of the main sequence. Here we report the discovery of SDSSJ235524.29+044855.7 as an eclipsing binary containing a cool subdwarf star, with a white dwarf companion. From the light curve and the radial-velocity curve of the binary we determine the mass and the radius of the cool subdwarf and we derive its effective temperature and luminosity by analysing its spectral energy distribution. Our results validate the theoretical relations between mass, radius, effective temperature and luminosity for low-mass, low-metallicity stars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: X-Shooter optical spectrum of SDSS J2355+0448.
Fig. 2: Periodogram obtained from the radial-velocity data of the cool subdwarf in the binary SDSS J2355+0448, derived from X-Shooter spectroscopy.
Fig. 3: Phase-folded HiPERCAM light curves of SDSS J2355+0448.
Fig. 4: The observational SED of the cool subdwarf in SDSS J2355+0448.
Fig. 5: The observed stellar parameter relations of the cool subdwarf in SDSS J2355+0448.

Similar content being viewed by others

Data availability

This work was based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, on the island of La Palma (program GTC21-18B), and on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 2100.D-5022(A). This publication makes use of VOSA, developed under the Spanish Virtual Observatory project supported from the Spanish MINECO through grant AyA2017-84089. This work made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Figures 1, 3 and 4 and Supplementary Figs. 1, 2 and 4 have associated raw data. The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The spectral/decomposition routine and the radial-velocity fitting method used in this work are not publicly available. The light-curve fitting method is available at https://github.com/trmrsh/cpp-lcurve. MIDAS is available at https://www.eso.org/sci/software/esomidas//. VOSA is available at http://svo2.cab.inta-csic.es/theory/vosa/. iSpec is available at https://www.blancocuaresma.com/s/iSpec. The binary_c stellar evolution code is available at https://www.ast.cam.ac.uk/~rgi/binary_c.html. The X-Shooter reduction pipeline (version 2.9.3) is available at https://www.eso.org/sci/software/pipelines/xshooter/ and the dedicated HiPERCAM pipeline is available at https://github.com/HiPERCAM/hipercam.

References

  1. Burrows, A., Hubbard, W. B., Saumon, D. & Lunine, J. I. An expanded set of brown dwarf and very low mass star models. Astrophys. J. 406, 158–171 (1993).

    Article  ADS  Google Scholar 

  2. Morgan, W. W., Keenan, P. C. & Kellman, E. An Atlas of Stellar Spectra, with an Outline of Spectral Classification (University of Chicago Press, 1943).

  3. Burgasser, A. J. et al. The first substellar subdwarf? Discovery of a metal-poor L dwarf with halo kinematics. Astrophys. J. 592, 1186–1192 (2003).

    Article  ADS  Google Scholar 

  4. Digby, A. P., Hambly, N. C., Cooke, J. A., Reid, I. N. & Cannon, R. D. The subdwarf luminosity function. Mon. Not. R. Astron. Soc. 344, 583–601 (2003).

    Article  ADS  Google Scholar 

  5. Rajpurohit, A. S. et al. High-resolution spectroscopic atlas of M subdwarfs. Effective temperature and metallicity. Astron. Astrophys. 564, A90 (2014).

    Article  Google Scholar 

  6. Lépine, S., Rich, R. M. & Shara, M. M. Revised metallicity classes for low-mass stars: dwarfs (dM), subdwarfs (sdM), extreme subdwarfs (esdM), and ultrasubdwarfs (usdM). Astrophys. J. 669, 1235–1247 (2007).

    Article  ADS  Google Scholar 

  7. Woolf, V. M., Lépine, S. & Wallerstein, G. Calibrating M-dwarf metallicities using molecular indices: extension to low-metallicity stars. Publ. Astron. Soc. Pac. 121, 117 (2009).

    Article  ADS  Google Scholar 

  8. Gizis, J. E. M-subdwarfs: spectroscopic classification and the metallicity scale. Astron. J. 113, 806–822 (1997).

    Article  ADS  Google Scholar 

  9. Stoughton, C. et al. Sloan Digital Sky Survey: early data release. Astron. J. 123, 485–548 (2002).

    Article  ADS  Google Scholar 

  10. Cui, X.-Q. et al. The large sky area multi-object fiber spectroscopic telescope (LAMOST). Res. Astron. Astrophys. 12, 1197–1242 (2012).

    Article  ADS  Google Scholar 

  11. Savcheva, A. S., West, A. A. & Bochanski, J. J. A new sample of cool subdwarfs from SDSS: properties and kinematics. Astrophys. J. 794, 145 (2014).

    Article  ADS  Google Scholar 

  12. Bai, Y. et al. Nearby M subdwarfs from LAMOST data release 2. Res. Astron. Astrophys. 16, 107 (2016).

    Article  ADS  Google Scholar 

  13. Kesseli, A. Y. et al. Radii of 88 M subdwarfs and updated radius relations for low-metallicity M dwarf stars. Preprint at https://arxiv.org/abs/1810.07702 (2018).

  14. Jao, W.-C., Nelan, E. P., Henry, T. J., Franz, O. G. & Wasserman, L. H. Cool subdwarf investigations. III. Dynamical masses of low-metallicity subdwarfs. Astron. J. 152, 153 (2016).

    Article  ADS  Google Scholar 

  15. Kepler, S. O. et al. New white dwarf stars in the Sloan Digital Sky Survey data release 10. Mon. Not. R. Astron. Soc. 446, 4078–4087 (2015).

    Article  ADS  Google Scholar 

  16. Rebassa-Mansergas, A. et al. The SDSS spectroscopic catalogue of white dwarf-main-sequence binaries: new identifications from DR 9–12. Mon. Not. R. Astron. Soc. 458, 3808–3819 (2016).

    Article  ADS  Google Scholar 

  17. Ren, J.-J. et al. White dwarf-main sequence binaries from LAMOST: the DR5 catalogue. Mon. Not. R. Astron. Soc. 477, 4641–4654 (2018).

    Article  ADS  Google Scholar 

  18. Parsons, S. G. et al. Testing the white dwarf mass-radius relationship with eclipsing binaries. Mon. Not. R. Astron. Soc. 470, 4473–4492 (2017).

    Article  ADS  Google Scholar 

  19. Parsons, S. G. et al. The scatter of the M dwarf mass−radius relationship. Mon. Not. R. Astron. Soc. 481, 1083–1096 (2018).

    Article  ADS  Google Scholar 

  20. Drake, A. J. et al. First results from the Catalina Real-time Transient Survey. Astrophys. J. 696, 870–884 (2009).

    Article  ADS  Google Scholar 

  21. Dhillon, V. et al. First light with HiPERCAM on the GTC. Proc. SPIE 10702, 107020L (2018).

  22. Rebassa-Mansergas, A., Gänsicke, B. T., Rodrguez-Gil, P., Schreiber, M. R. & Koester, D. Post-common-envelope binaries from SDSS. I. 101 white dwarf main-sequence binaries with multiple Sloan Digital Sky Survey spectroscopy. Mon. Not. R. Astron. Soc. 382, 1377–1393 (2007).

    Article  ADS  Google Scholar 

  23. Rajpurohit, A. S. et al. Spectral energy distribution of M-subdwarfs: a study of their atmospheric properties. Astron. Astrophys. 596, A33 (2016).

    Article  Google Scholar 

  24. Koester, D. White dwarf spectra and atmosphere models. Mem. Soc. Astron. Ital. 81, 921–931 (2010).

    ADS  Google Scholar 

  25. Althaus, L. G., De Gerónimo, F., Córsico, A., Torres, S. & Garca-Berro, E. The evolution of white dwarfs resulting from helium-enhanced, low-metallicity progenitor stars. Astron. Astrophys. 597, A67 (2017).

    Article  Google Scholar 

  26. Copperwheat, C. M. et al. Physical properties of IP Pegasi: an eclipsing dwarf nova with an unusually cool white dwarf. Mon. Not. R. Astron. Soc. 402, 1824–1840 (2010).

    Article  ADS  Google Scholar 

  27. Bayo, A. et al. VOSA: virtual observatory SED analyzer. An application to the Collinder 69 open cluster. Astron. Astrophys. 492, 277–287 (2008).

    Article  ADS  Google Scholar 

  28. Pickles, A. J. A stellar spectral flux library: 1150–25000 Å. Publ. Astron. Soc. Pac. 110, 863–878 (1998).

    Article  ADS  Google Scholar 

  29. Hewett, P. C., Warren, S. J., Leggett, S. K. & Hodgkin, S. T. The UKIRT infrared Deep Sky Survey ZY JHK photometric system: passbands and synthetic colours. Mon. Not. R. Astron. Soc. 367, 454–468 (2006).

    Article  ADS  Google Scholar 

  30. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    Article  ADS  Google Scholar 

  31. Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    Article  ADS  Google Scholar 

  32. Cross, N. J. G. et al. The VISTA science archive. Astron. Astrophys. 548, A119 (2012).

    Article  Google Scholar 

  33. Lépine, S. et al. A spectroscopic catalog of the brightest (J < 9) M dwarfs in the Northern sky. Astron. J. 145, 102 (2013).

    Article  ADS  Google Scholar 

  34. Mann, A. W., Brewer, J. M., Gaidos, E., Lépine, S. & Hilton, E. J. Prospecting in late-type dwarfs: a calibration of infrared and visible spectroscopic metallicities of late K and M dwarfs spanning 1.5 dex. Astron. J. 145, 52 (2013).

    Article  ADS  Google Scholar 

  35. Blanco-Cuaresma, S., Soubiran, C., Heiter, U. & Jofré, P. Determining stellar atmospheric parameters and chemical abundances of FGK stars with iSpec. Astron. Astrophys. 569, A111 (2014).

    Article  ADS  Google Scholar 

  36. Iben, I. Jr. & Livio, M. Common envelopes in binary star evolution. Publ. Astron. Soc. Pac. 105, 1373–1406 (1993).

    Article  ADS  Google Scholar 

  37. Hurley, J. R., Tout, C. A. & Pols, O. R. Evolution of binary stars and the effect of tides on binary populations. Mon. Not. R. Astron. Soc. 329, 897–928 (2002).

    Article  ADS  Google Scholar 

  38. Catalán, S., Isern, J., Garca-Berro, E. & Ribas, I. The initial-final mass relationship of white dwarfs revisited: effect on the luminosity function and mass distribution. Mon. Not. R. Astron. Soc. 387, 1693–1706 (2008).

    Article  ADS  Google Scholar 

  39. Cummings, J. D., Kalirai, J. S., Tremblay, P.-E., Ramirez-Ruiz, E. & Choi, J. The white dwarf initial-final mass relation for progenitor stars from 0.85 to 7.5 M. Astrophys. J. 866, 21 (2018).

    Article  ADS  Google Scholar 

  40. Izzard, R. G., Tout, C. A., Karakas, A. I. & Pols, O. R. A new synthetic model for asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 350, 407–426 (2004).

    Article  ADS  Google Scholar 

  41. Izzard, R. G. et al. Binary stars in the Galactic thick disc. Mon. Not. R. Astron. Soc. 473, 2984–2999 (2018).

    Article  ADS  Google Scholar 

  42. Dotter, A. et al. The dartmouth stellar evolution database. Astrophys. J. 178, 89–101 (2008).

    Article  Google Scholar 

  43. Feiden, G. A., Chaboyer, B. & Dotter, A. Accurate low-mass stellar models of KOI-126. Astrophys. J. 740, L25 (2011).

    Article  ADS  Google Scholar 

  44. Baraffe, I., Chabrier, G., Allard, F. & Hauschildt, P. H. Evolutionary models for metal-poor low-mass stars. Lower main sequence of globular clusters and halo field stars. Astron. Astrophys. 327, 1054–1069 (1997).

    ADS  Google Scholar 

  45. Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105 (2011).

    Article  Google Scholar 

  46. Rechenberg, I. Evolutionsstrategie ‘94 (Froomann–Holzboog, 1994).

  47. Rebassa-Mansergas, A. et al. The White Dwarf Binary Pathways survey. II. Radial velocities of 1453 FGK stars with white dwarf companions from LAMOST DR 4. Mon. Not. R. Astron. Soc. 472, 4193–4203 (2017).

    Article  ADS  Google Scholar 

  48. Scargle, J. D. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835–853 (1982).

    Article  ADS  Google Scholar 

  49. Schwarzenberg-Czerny, A. Fast and statistically optimal period search in uneven sampled observations. Astrophys. J. 460, L107–L110 (1996).

    Article  ADS  Google Scholar 

  50. Bloemen, S. et al. Kepler observations of the beaming binary KPD 1946+4340. Mon. Not. R. Astron. Soc. 410, 1787–1796 (2011).

    ADS  Google Scholar 

  51. Claret, A. Non-linear limb-darkening law for LTE models. VizieR Online Data Catalog 336, 31081 (2000).

    ADS  Google Scholar 

  52. Gianninas, A., Strickland, B. D., Kilic, M. & Bergeron, P. Limb-darkening coefficients for eclipsing white dwarfs. Astrophys. J. 766, 3 (2013).

    Article  ADS  Google Scholar 

  53. Claret, A. & Bloemen, S. Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems. Astron. Astrophys. 529, A75 (2011).

    Article  ADS  Google Scholar 

  54. Panei, J. A., Althaus, L. G., Chen, X. & Han, Z. Full evolution of low-mass white dwarfs with helium and oxygen cores. Mon. Not. R. Astron. Soc. 382, 779–792 (2007).

    Article  ADS  Google Scholar 

  55. Press, W. H., Teukolsky, A. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes. The Art of Scientific Computing 3rd edn (Cambridge Univ. Press, 2007).

  56. Allard, F., Homeier, D. & Freytag, B. Models of very-low-mass stars, brown dwarfs and exoplanets. Phil. Trans. R. Soc. Lond. Ser. A 370, 2765–2777 (2012).

    Article  ADS  Google Scholar 

  57. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  58. Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G. & Andrae, R. Estimating distance from parallaxes. IV. Distances to 1.33 billion stars in Gaia Data Release 2. Astron. J. 156, 58 (2018).

    Article  ADS  Google Scholar 

  59. Gaia Collaboration et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Article  Google Scholar 

  60. Gustafsson, B. et al. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. Astrophys. 486, 951–970 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the MINECO Ramón y Cajal programme RYJ-2016-20254 (to A.R.M.) and grant AYA2017-86274-P (to A.R.M. and S.T.) and by the AGAUR grant SGR-661/2017 (to A.R.M. and S.T.). S.G.P. acknowledges the support of the Leverhulme Trust. J.J.R. acknowledges support from the Joint Funds of the National Natural Sciences Foundation of China (grants U1531244 and U1831209), the NSFC grant 11833006 and the Young Researcher Grant of the National Astronomical Observatories, Chinese Academy of Sciences. HiPERCAM and V.S.D. are funded by the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) under ERC-2013-ADG grant agreement number 340040 (HiPERCAM). We thank F. Jimémez-Esteban for advice on the use of VOSA, A. Kesseli for sharing her ultra-subdwarf spectra and L. Althaus for discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the work presented in this paper. A.R.M. performed the decomposition and fitting of the spectra, carried out the entire spectral analysis (except the one required by iSpec), conducted the VOSA analysis and led the writing of the manuscript. S.G.P. reduced all the spectroscopic and photometric data and carried out the light-curve analysis. V.S.D. and S.P.L. performed the GTC observations. J.J.R. conducted the iSpec analysis. V.S.D., S.P.L. and T.R.M. contributed to the development of HiPERCAM, a vital instrument for obtaining the results of this work. S.T. carried out the binary_c simulation and calculated the cooling age of the white dwarf. A.R.M., S.G.P. and J.J.R. discovered the system. All authors reviewed the manuscript.

Corresponding author

Correspondence to Alberto Rebassa-Mansergas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Astronomy thanks Sebastien Lepine and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Supplementary Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebassa-Mansergas, A., Parsons, S.G., Dhillon, V.S. et al. Accurate mass and radius determinations of a cool subdwarf in an eclipsing binary. Nat Astron 3, 553–560 (2019). https://doi.org/10.1038/s41550-019-0746-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-019-0746-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing