The angular size of a star is a critical factor in determining its basic properties1. Direct measurement of stellar angular diameters is difficult: at interstellar distances stars are generally too small to resolve by any individual imaging telescope. This fundamental limitation can be overcome by studying the diffraction pattern in the shadow cast when an asteroid occults a star2, but only when the photometric uncertainty is smaller than the noise added by atmospheric scintillation3. Atmospheric Cherenkov telescopes used for particle astrophysics observations have not generally been exploited for optical astronomy due to the modest optical quality of the mirror surface. However, their large mirror area makes them well suited for such high-time-resolution precision photometry measurements4. Here we report two occultations of stars observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS)5 Cherenkov telescopes with millisecond sampling, from which we are able to provide a direct measurement of the occulted stars’ angular diameter at the ≤0.1 mas scale. This is a resolution never achieved before with optical measurements and represents an order of magnitude improvement over the equivalent lunar occultation method6. We compare the resulting stellar radius with empirically derived estimates from temperature and brightness measurements, confirming the latter can be biased for stars with ambiguous stellar classifications.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The datasets generated and/or analysed in this study are available from the corresponding authors on request.

Code availability

The computer code used to analyse the data in this study is available from the corresponding authors on request.

Additional information

Journal peer review information: Nature Astronomy thanks Gerard van Belle, Andrea Richichi and Ellyn Baines for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Mozurkewich, D. et al. Angular diameters of stars from the Mark III optical interferometer. Astron. J. 126, 2502–2520 (2003).

  2. 2.

    Roques, F., Moncuquet, M. & Sicardy, B. Stellar occultations by small bodies—diffraction effects. Astron. J. 93, 1549–1558 (1987).

  3. 3.

    Morbey, C. L. Distortion mechanisms for lunar occultation diffraction patterns. Astron. J. 79, 1304–1306 (1974).

  4. 4.

    Lacki, B. C. Cherenkov telescopes as optical telescopes for bright sources: today’s specialized 30-m telescopes? Mon. Not. R. Astron. Soc. 416, 3075–3082 (2011).

  5. 5.

    Holder, J. et al. The first VERITAS telescope. Astropart. Phys. 25, 391–401 (2006).

  6. 6.

    Ridgway, S. T. Considerations for the application of the lunar occultation technique. Astron. J. 82, 511–515 (1977).

  7. 7.

    Sturmann, L. Application of the TDI method in observations of lunar occultations. Publ. Astron. Soc. Pac. 106, 1165–1171 (1994).

  8. 8.

    Covey, K. R. et al. Stellar SEDs from 0.3 to 2.5 μm: tracing the stellar locus and searching for color outliers in the SDSS and 2MASS. Astron. J. 134, 2398–2417 (2007).

  9. 9.

    Gaia Collaboration Gaia data release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  10. 10.

    Claret, A. & Bloemen, S. Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems. Astron. Astrophys. 529, A75 (2011).

  11. 11.

    Howarth, I. D. New limb-darkening coefficients and synthetic photometry for model-atmosphere grids at Galactic, LMC and SMC abundances. Mon. Not. R. Astron. Soc. 413, 1515–1523 (2011).

  12. 12.

    Neilson, H. R. & Lester, J. B. Spherically-symmetric model stellar atmospheres and limb darkening. I. Limb-darkening laws, gravity-darkening coefficients and angular diameter corrections for red giant stars. Astron. Astrophys. 554, A98 (2013).

  13. 13.

    Neilson, H. R. & Lester, J. B. Spherically symmetric model stellar atmospheres and limb darkening. II. Limb-darkening laws, gravity-darkening coefficients and angular diameter corrections for FGK dwarf stars. Astron. Astrophys. 556, A86 (2013).

  14. 14.

    Richichi, A. & Glindemann, A. Advances in the interpretation and analysis of lunar occultation light curves. Astron. Astrophys. 538, A56 (2012).

  15. 15.

    Stevens, D. J., Stassun, K. G. & Gaudi, B. S. Empirical bolometric fluxes and angular diameters of 1.6 million Tycho-2 stars and radii of 350,000 stars with Gaia DR1 Parallaxes. Astron. J. 154, 259 (2017).

  16. 16.

    Bourgés, L. et al. in Astronomical Data Analysis Software and Systems XXIII Vol. 485 (eds Manset, N. & Forshay, P.) 223–226 (2014).

  17. 17.

    Huber, D. et al. The K2 ecliptic plane input catalog (EPIC) and stellar classifications of 138,600 targets in campaigns 1-8. Astrophys. J. Suppl. 224, 2–19 (2016).

  18. 18.

    Andrae, R. et al. Gaia data release 2. First stellar parameters from Apsis. Astron. Astrophys. 616, A8 (2018).

  19. 19.

    Boyajian, T. et al. Stellar diameters and temperatures—VI. High angular resolution measurements of the transiting exoplanet host stars HD 189733 and HD 209458 and implications for models of cool dwarfs. Mon. Not. R. Astron. Soc. 447, 846–857 (2015).

  20. 20.

    Duvert, G. JMDC: JMMC measured stellar diameters catalogue. VizieR Online Data Catalog 2345 (2016); http://vizier.u-strasbg.fr/viz-bin/VizieR

  21. 21.

    Baines, E. K. et al. Angular diameters and effective temperatures of 25 K giant stars from the CHARA array. Astrophys. J. 710, 1365–1374 (2010).

  22. 22.

    Baines, E. K. et al. Fundamental parameters of 87 stars from the navy precision optical interferometer. Astron. J. 155, 30–46 (2018).

  23. 23.

    Hanbury Brown, R., Davis, J. & Allen, L. R. The angular diameters of 32 stars. Mon. Not. R. Astron. Soc. 167, 121–136 (1974).

  24. 24.

    The Cherenkov Telescope Array Consortium Science with the Cherenkov Telescope Array (World Scientific, 2019); https://doi.org/10.1142/10986

  25. 25.

    Chelli, A. et al. Pseudomagnitudes and differential surface brightness: application to the apparent diameter of stars. Astron. Astrophys. 589, A112 (2016).

  26. 26.

    Elliot, J. L., Rages, K. & Veverka, J. The occultation of beta Scorpii by Jupiter. VII—the angular diameters of beta Scorpii A1 and A2. Astrophys. J. 207, 994–1001 (1976).

  27. 27.

    Reitsema, H. J., Hubbard, W. B., Zellner, B. H. & Lebofsky, L. A. High-speed photometry of the 11 December 1979 Juno occultation. Astron. J. 86, 121–126 (1981).

  28. 28.

    von Braun, K. et al. Stellar diameters and temperatures—V. 11 newly characterized exoplanet host stars. Mon. Not. R. Astron. Soc. 438, 2413–2425 (2014).

  29. 29.

    Acharya, B. S. et al. Introducing the CTA concept. Astropart. Phys. 43, 3–18 (2013).

  30. 30.

    Weekes, T. C. The atmospheric Cherenkov technique in very high energy gamma-ray astronomy. Space Sci. Rev. 75, 1–15 (1996).

  31. 31.

    Hinton, J. A. & Hofmann, W. Teraelectronvolt astronomy. Annu. Rev. Astron. Astrophys. 47, 523–565 (2009).

  32. 32.

    Dravins, D., Lindegren, L., Mezey, E. & Young, A. T. Atmospheric intensity scintillation of stars. III. Effects for different telescope apertures. Publ. Astron. Soc. Pac. 110, 610–633 (1998).

  33. 33.

    Jennings, J. K. & McGruder, C. H. III Comparison of the disk diffraction pattern with the straight-edge diffraction pattern in occultations. Astron. J. 118, 3061–3067 (1999).

  34. 34.

    Nather, R. E. & Evans, D. S. Photoelectric measurement of lunar occultations. I. The process. Astron. J. 75, 575–582 (1970).

  35. 35.

    Daniel, M. K. Application of radiosonde data to VERITAS simulations. Int. Cosmic Ray Conf. 3, 1329–1332 (2008).

  36. 36.

    Roache, E. et al. Mirror facets for the VERITAS telescopes. Int. Cosmic Ray Conf. 3, 1397–1400 (2008).

  37. 37.

    Gazda, E., Nguyen, T., Otte, N. & Richards, G. Photon detection efficiency measurements of the VERITAS Cherenkov telescope photomultipliers after four years of operation. J. Instrum. 11, P11015–P11015 (2016).

  38. 38.

    Pickles, A. J. A stellar spectral flux library: 1150–25000 A. VizieR Online Data Catalog 611 (1998); http://vizier.u-strasbg.fr/viz-bin/VizieR

  39. 39.

    Kesseli, A. Y. et al. An empirical template library of stellar spectra for a wide range of spectral classes, luminosity classes, and metallicities using SDSS BOSS spectra. Astrophys. J. Suppl. 230, 16–37 (2017).

Download references


This research is supported by grants from the US Department of Energy Office of Science, the US National Science Foundation and the Smithsonian Institution, by NSERC in Canada, and by the Young Investigators Program of the Helmholtz Association. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument. This work has made use of data and updates by S. Preston from http://www.asteroidoccultation.com; data from the JPL Small-Body Database browser at http://ssd.jpl.nasa.gov; data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium); and the SIMBAD database, operated at CDS, Strasbourg, France. The authors acknowledge discussions with S. Cikota and J. Cortina.

Author information

Author notes

    • D. Nieto

    Present address: Facultad de Ciencias Físicas and IPARCOS, Universidad Complutense de Madrid, Madrid, Spain

    • C. Rulten

    Present address: Department of Physics, University of Durham, Durham, UK


  1. Center for Astrophysics | Harvard & Smithsonian, Fred Lawrence Whipple Observatory, Amado, AZ, USA

    • W. Benbow
    • , M. K. Daniel
    • , G. Hughes
    •  & E. Roache
  2. Department of Physics and Astronomy, University of California, Los Angeles, CA, USA

    • R. Bird
    •  & R. A. Ong
  3. Department of Astronomy / Department of Physics, Columbia University, New York, NY, USA

    • A. Brill
    • , Q. Feng
    • , J. P. Halpern
    • , T. B. Humensky
    • , D. Nieto
    •  & A. Petrashyk
  4. Institute of Physics and Astronomy, University of Potsdam, Potsdam-Golm, Germany

    • R. Brose
    • , M. Pohl
    • , I. Sushch
    •  & A. Wilhelm
  5. DESY, Zeuthen, Germany

    • R. Brose
    • , C. Giuri
    • , O. Gueta
    • , T. Hassan
    • , N. Kelley-Hoskins
    • , M. Krause
    • , G. Maier
    • , M. Nievas-Rosillo
    • , M. Pohl
    • , E. Pueschel
    • , I. Sadeh
    •  & A. Wilhelm
  6. Department of Physics and Astronomy, Iowa State University, Ames, IA, USA

    • A. J. Chromey
    •  & R. M. Wells
  7. Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA

    • J. P. Finley
    •  & G. H. Sembroski
  8. School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA

    • L. Fortson
    • , C. Rulten
    •  & K. Shahinyan
  9. Department of Physics, California State University, East Bay, Hayward, CA, USA

    • A. Furniss
  10. School of Physics, National University of Ireland Galway, Galway, Ireland

    • G. H. Gillanders
    • , A. M. Joyce
    • , M. J. Lang
    •  & P. Moriarty
  11. Physics Department, McGill University, Montreal, Quebec, Canada

    • D. Hanna
    • , T. T. Y. Lin
    • , S. O’Brien
    •  & K. Ragan
  12. Department of Physics and Astronomy and the Bartol Research Institute, University of Delaware, Newark, DE, USA

    • J. Holder
    • , G. T. Richards
    •  & T. J. Williamson
  13. Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA

    • P. Kaaret
    •  & P. Wilcox
  14. Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA

    • P. Kar
    • , D. Kieda
    •  & N. Matthews
  15. Department of Physics and Astronomy, DePauw University, Greencastle, IN, USA

    • M. Kertzman
  16. Department of Physics and Astronomy, Barnard College, Columbia University, New York, NY, USA

    • R. Mukherjee
  17. School of Physics, University College Dublin, Dublin, Ireland

    • S. O’Brien
    •  & J. Quinn
  18. WIPAC and Department of Physics, University of Wisconsin-Madison, Madison, WI, USA

    • N. Park
  19. Department of Physical Sciences, Cork Institute of Technology, Cork, Ireland

    • P. T. Reynolds
  20. Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL, USA

    • M. Santander
  21. Enrico Fermi Institute, University of Chicago, Chicago, IL, USA

    • S. P. Wakely
  22. Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, USA

    • D. A. Williams


  1. Search for W. Benbow in:

  2. Search for R. Bird in:

  3. Search for A. Brill in:

  4. Search for R. Brose in:

  5. Search for A. J. Chromey in:

  6. Search for M. K. Daniel in:

  7. Search for Q. Feng in:

  8. Search for J. P. Finley in:

  9. Search for L. Fortson in:

  10. Search for A. Furniss in:

  11. Search for G. H. Gillanders in:

  12. Search for C. Giuri in:

  13. Search for O. Gueta in:

  14. Search for D. Hanna in:

  15. Search for J. P. Halpern in:

  16. Search for T. Hassan in:

  17. Search for J. Holder in:

  18. Search for G. Hughes in:

  19. Search for T. B. Humensky in:

  20. Search for A. M. Joyce in:

  21. Search for P. Kaaret in:

  22. Search for P. Kar in:

  23. Search for N. Kelley-Hoskins in:

  24. Search for M. Kertzman in:

  25. Search for D. Kieda in:

  26. Search for M. Krause in:

  27. Search for M. J. Lang in:

  28. Search for T. T. Y. Lin in:

  29. Search for G. Maier in:

  30. Search for N. Matthews in:

  31. Search for P. Moriarty in:

  32. Search for R. Mukherjee in:

  33. Search for D. Nieto in:

  34. Search for M. Nievas-Rosillo in:

  35. Search for S. O’Brien in:

  36. Search for R. A. Ong in:

  37. Search for N. Park in:

  38. Search for A. Petrashyk in:

  39. Search for M. Pohl in:

  40. Search for E. Pueschel in:

  41. Search for J. Quinn in:

  42. Search for K. Ragan in:

  43. Search for P. T. Reynolds in:

  44. Search for G. T. Richards in:

  45. Search for E. Roache in:

  46. Search for C. Rulten in:

  47. Search for I. Sadeh in:

  48. Search for M. Santander in:

  49. Search for G. H. Sembroski in:

  50. Search for K. Shahinyan in:

  51. Search for I. Sushch in:

  52. Search for S. P. Wakely in:

  53. Search for R. M. Wells in:

  54. Search for P. Wilcox in:

  55. Search for A. Wilhelm in:

  56. Search for D. A. Williams in:

  57. Search for T. J. Williamson in:


All authors contributed equally to the operation of the VERITAS telescopes. M.K.D. conceived the enhanced current monitor system used in these observations; T.H. proposed the occultation observations; A.M.J., D.A.W., T.J.W., J.Q. and A.B. took the observations; M.K.D., T.H. and N.M. reduced and analysed the data; M.K.D. and T.H. wrote the main paper and Methods.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to M. K. Daniel or T. Hassan.

About this article

Publication history