Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct measurement of stellar angular diameters by the VERITAS Cherenkov telescopes


The angular size of a star is a critical factor in determining its basic properties1. Direct measurement of stellar angular diameters is difficult: at interstellar distances stars are generally too small to resolve by any individual imaging telescope. This fundamental limitation can be overcome by studying the diffraction pattern in the shadow cast when an asteroid occults a star2, but only when the photometric uncertainty is smaller than the noise added by atmospheric scintillation3. Atmospheric Cherenkov telescopes used for particle astrophysics observations have not generally been exploited for optical astronomy due to the modest optical quality of the mirror surface. However, their large mirror area makes them well suited for such high-time-resolution precision photometry measurements4. Here we report two occultations of stars observed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS)5 Cherenkov telescopes with millisecond sampling, from which we are able to provide a direct measurement of the occulted stars’ angular diameter at the ≤0.1 mas scale. This is a resolution never achieved before with optical measurements and represents an order of magnitude improvement over the equivalent lunar occultation method6. We compare the resulting stellar radius with empirically derived estimates from temperature and brightness measurements, confirming the latter can be biased for stars with ambiguous stellar classifications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ingress and egress light curves for both asteroid occultations.
Fig. 2: Individual and combined stellar size measurements.
Fig. 3: Comparison of the angular size measurements and stellar radius estimates in this work compared with those available in the literature.
Fig. 4: Comparison with the available directly measured stellar angular size measurements.

Data availability

The datasets generated and/or analysed in this study are available from the corresponding authors on request.

Code availability

The computer code used to analyse the data in this study is available from the corresponding authors on request.


  1. Mozurkewich, D. et al. Angular diameters of stars from the Mark III optical interferometer. Astron. J. 126, 2502–2520 (2003).

    Article  ADS  Google Scholar 

  2. Roques, F., Moncuquet, M. & Sicardy, B. Stellar occultations by small bodies—diffraction effects. Astron. J. 93, 1549–1558 (1987).

    Article  ADS  Google Scholar 

  3. Morbey, C. L. Distortion mechanisms for lunar occultation diffraction patterns. Astron. J. 79, 1304–1306 (1974).

    Article  ADS  Google Scholar 

  4. Lacki, B. C. Cherenkov telescopes as optical telescopes for bright sources: today’s specialized 30-m telescopes? Mon. Not. R. Astron. Soc. 416, 3075–3082 (2011).

    Article  ADS  Google Scholar 

  5. Holder, J. et al. The first VERITAS telescope. Astropart. Phys. 25, 391–401 (2006).

    Article  ADS  Google Scholar 

  6. Ridgway, S. T. Considerations for the application of the lunar occultation technique. Astron. J. 82, 511–515 (1977).

    Article  ADS  Google Scholar 

  7. Sturmann, L. Application of the TDI method in observations of lunar occultations. Publ. Astron. Soc. Pac. 106, 1165–1171 (1994).

    Article  ADS  Google Scholar 

  8. Covey, K. R. et al. Stellar SEDs from 0.3 to 2.5 μm: tracing the stellar locus and searching for color outliers in the SDSS and 2MASS. Astron. J. 134, 2398–2417 (2007).

    Article  ADS  Google Scholar 

  9. Gaia Collaboration Gaia data release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  10. Claret, A. & Bloemen, S. Gravity and limb-darkening coefficients for the Kepler, CoRoT, Spitzer, uvby, UBVRIJHK, and Sloan photometric systems. Astron. Astrophys. 529, A75 (2011).

    Article  ADS  Google Scholar 

  11. Howarth, I. D. New limb-darkening coefficients and synthetic photometry for model-atmosphere grids at Galactic, LMC and SMC abundances. Mon. Not. R. Astron. Soc. 413, 1515–1523 (2011).

    Article  ADS  Google Scholar 

  12. Neilson, H. R. & Lester, J. B. Spherically-symmetric model stellar atmospheres and limb darkening. I. Limb-darkening laws, gravity-darkening coefficients and angular diameter corrections for red giant stars. Astron. Astrophys. 554, A98 (2013).

    Article  ADS  Google Scholar 

  13. Neilson, H. R. & Lester, J. B. Spherically symmetric model stellar atmospheres and limb darkening. II. Limb-darkening laws, gravity-darkening coefficients and angular diameter corrections for FGK dwarf stars. Astron. Astrophys. 556, A86 (2013).

    Article  ADS  Google Scholar 

  14. Richichi, A. & Glindemann, A. Advances in the interpretation and analysis of lunar occultation light curves. Astron. Astrophys. 538, A56 (2012).

    Article  ADS  Google Scholar 

  15. Stevens, D. J., Stassun, K. G. & Gaudi, B. S. Empirical bolometric fluxes and angular diameters of 1.6 million Tycho-2 stars and radii of 350,000 stars with Gaia DR1 Parallaxes. Astron. J. 154, 259 (2017).

    Article  ADS  Google Scholar 

  16. Bourgés, L. et al. in Astronomical Data Analysis Software and Systems XXIII Vol. 485 (eds Manset, N. & Forshay, P.) 223–226 (2014).

  17. Huber, D. et al. The K2 ecliptic plane input catalog (EPIC) and stellar classifications of 138,600 targets in campaigns 1-8. Astrophys. J. Suppl. 224, 2–19 (2016).

    Article  ADS  Google Scholar 

  18. Andrae, R. et al. Gaia data release 2. First stellar parameters from Apsis. Astron. Astrophys. 616, A8 (2018).

    Article  Google Scholar 

  19. Boyajian, T. et al. Stellar diameters and temperatures—VI. High angular resolution measurements of the transiting exoplanet host stars HD 189733 and HD 209458 and implications for models of cool dwarfs. Mon. Not. R. Astron. Soc. 447, 846–857 (2015).

    Article  ADS  Google Scholar 

  20. Duvert, G. JMDC: JMMC measured stellar diameters catalogue. VizieR Online Data Catalog 2345 (2016);

  21. Baines, E. K. et al. Angular diameters and effective temperatures of 25 K giant stars from the CHARA array. Astrophys. J. 710, 1365–1374 (2010).

    Article  ADS  Google Scholar 

  22. Baines, E. K. et al. Fundamental parameters of 87 stars from the navy precision optical interferometer. Astron. J. 155, 30–46 (2018).

    Article  ADS  Google Scholar 

  23. Hanbury Brown, R., Davis, J. & Allen, L. R. The angular diameters of 32 stars. Mon. Not. R. Astron. Soc. 167, 121–136 (1974).

    Article  ADS  Google Scholar 

  24. The Cherenkov Telescope Array Consortium Science with the Cherenkov Telescope Array (World Scientific, 2019);

  25. Chelli, A. et al. Pseudomagnitudes and differential surface brightness: application to the apparent diameter of stars. Astron. Astrophys. 589, A112 (2016).

    Article  Google Scholar 

  26. Elliot, J. L., Rages, K. & Veverka, J. The occultation of beta Scorpii by Jupiter. VII—the angular diameters of beta Scorpii A1 and A2. Astrophys. J. 207, 994–1001 (1976).

    Article  ADS  Google Scholar 

  27. Reitsema, H. J., Hubbard, W. B., Zellner, B. H. & Lebofsky, L. A. High-speed photometry of the 11 December 1979 Juno occultation. Astron. J. 86, 121–126 (1981).

    Article  ADS  Google Scholar 

  28. von Braun, K. et al. Stellar diameters and temperatures—V. 11 newly characterized exoplanet host stars. Mon. Not. R. Astron. Soc. 438, 2413–2425 (2014).

    Article  ADS  Google Scholar 

  29. Acharya, B. S. et al. Introducing the CTA concept. Astropart. Phys. 43, 3–18 (2013).

    Article  ADS  Google Scholar 

  30. Weekes, T. C. The atmospheric Cherenkov technique in very high energy gamma-ray astronomy. Space Sci. Rev. 75, 1–15 (1996).

    Article  ADS  Google Scholar 

  31. Hinton, J. A. & Hofmann, W. Teraelectronvolt astronomy. Annu. Rev. Astron. Astrophys. 47, 523–565 (2009).

    Article  ADS  Google Scholar 

  32. Dravins, D., Lindegren, L., Mezey, E. & Young, A. T. Atmospheric intensity scintillation of stars. III. Effects for different telescope apertures. Publ. Astron. Soc. Pac. 110, 610–633 (1998).

    Article  ADS  Google Scholar 

  33. Jennings, J. K. & McGruder, C. H. III Comparison of the disk diffraction pattern with the straight-edge diffraction pattern in occultations. Astron. J. 118, 3061–3067 (1999).

    Article  ADS  Google Scholar 

  34. Nather, R. E. & Evans, D. S. Photoelectric measurement of lunar occultations. I. The process. Astron. J. 75, 575–582 (1970).

    Article  ADS  Google Scholar 

  35. Daniel, M. K. Application of radiosonde data to VERITAS simulations. Int. Cosmic Ray Conf. 3, 1329–1332 (2008).

    ADS  Google Scholar 

  36. Roache, E. et al. Mirror facets for the VERITAS telescopes. Int. Cosmic Ray Conf. 3, 1397–1400 (2008).

    ADS  Google Scholar 

  37. Gazda, E., Nguyen, T., Otte, N. & Richards, G. Photon detection efficiency measurements of the VERITAS Cherenkov telescope photomultipliers after four years of operation. J. Instrum. 11, P11015–P11015 (2016).

    Article  Google Scholar 

  38. Pickles, A. J. A stellar spectral flux library: 1150–25000 A. VizieR Online Data Catalog 611 (1998);

  39. Kesseli, A. Y. et al. An empirical template library of stellar spectra for a wide range of spectral classes, luminosity classes, and metallicities using SDSS BOSS spectra. Astrophys. J. Suppl. 230, 16–37 (2017).

    Article  ADS  Google Scholar 

Download references


This research is supported by grants from the US Department of Energy Office of Science, the US National Science Foundation and the Smithsonian Institution, by NSERC in Canada, and by the Young Investigators Program of the Helmholtz Association. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and at the collaborating institutions in the construction and operation of the instrument. This work has made use of data and updates by S. Preston from; data from the JPL Small-Body Database browser at; data from the European Space Agency (ESA) mission Gaia (, processed by the Gaia Data Processing and Analysis Consortium (DPAC,; and the SIMBAD database, operated at CDS, Strasbourg, France. The authors acknowledge discussions with S. Cikota and J. Cortina.

Author information

Authors and Affiliations



All authors contributed equally to the operation of the VERITAS telescopes. M.K.D. conceived the enhanced current monitor system used in these observations; T.H. proposed the occultation observations; A.M.J., D.A.W., T.J.W., J.Q. and A.B. took the observations; M.K.D., T.H. and N.M. reduced and analysed the data; M.K.D. and T.H. wrote the main paper and Methods.

Corresponding authors

Correspondence to M. K. Daniel or T. Hassan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Astronomy thanks Gerard van Belle, Andrea Richichi and Ellyn Baines for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benbow, W., Bird, R., Brill, A. et al. Direct measurement of stellar angular diameters by the VERITAS Cherenkov telescopes. Nat Astron 3, 511–516 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing