Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental characterization of the energetics of low-temperature surface reactions

Abstract

Astrochemical reactions on the surfaces of dust grains, for instance, are thought to be responsible for the formation of complex organic molecules, which are of potential importance for the origin of life. In the situation where the chemical composition of dust surfaces is not precisely known, knowledge of the fundamental reaction properties gains significance. Here we describe an experimental technique that can be used to measure the energy released in reactions involving of a single pair of reactants. These data can be directly compared with the results of quantum chemical computations leading to unequivocal conclusions regarding the reaction pathways and the presence of energy barriers. It allows the prediction of the outcomes of astrochemical surface reactions with higher accuracy compared with that achieved based on gas-phase studies. However, for the highest accuracy, some understanding of the catalytic influence of specific surfaces on the reactions is required. The method was applied to study the reactions of C atoms with H2, O2 and C2H2. The formation of HCH, CO + O and triplet cyclic-C3H2 products has been revealed, correspondingly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the chemical reactions occurring inside He droplets.
Fig. 2: The measured depletion of the He droplet beam caused by exothermic reactions of fixed amount of C atoms as a function of the efficiency of doping of the He droplets with a second reactant.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Carruthers, G. R. Atomic and molecular hydrogen in interstellar space. Space Sci. Rev. 10, 459–482 (1970).

    Article  ADS  Google Scholar 

  2. Herbst, E. & van Dishoeck, E. F. Complex organic interstellar molecules. Annu. Rev. Astron. Astrophys. 47, 427–480 (2009).

    Article  ADS  Google Scholar 

  3. Ehrenfreund, P. & Charnley, S. B. Organic molecules in the interstellar medium, comets, and meteorites: a voyage from dark clouds to the early Earth. Annu. Rev. Astron. Astrophys. 38, 427–483 (2000).

    Article  ADS  Google Scholar 

  4. Fray, N. et al. High-molecular-weight organic matter in the particles of comet 67P/Churyumov–Gerasimenko. Nature 538, 72–74 (2016).

    Article  ADS  Google Scholar 

  5. Elsila, J. E. et al. Meteoritic amino acids: diversity in compositions reflects parent body histories. ACS Cent. Sci. 2, 370–379 (2016).

    Article  Google Scholar 

  6. Pearce, B. K. D., Pudritz, R. E., Semenov, D. A. & Henning, T. K. Origin of the RNA world: the fate of nucleobases in warm little ponds. Proc. Natl Acad. Sci. USA 114, 11327–11332 (2017).

    Article  ADS  Google Scholar 

  7. OrÓ, J. Synthesis of organic compounds by high-energy electrons. Nature 197, 971–974 (1963).

    Article  ADS  Google Scholar 

  8. Wakelam, V. et al. A kinetic database for astrochemistry (KIDA). Astrophys. J. Suppl. Ser. 199, 21 (2012).

    Article  ADS  Google Scholar 

  9. Krasnokutski, S. A. et al. Ultra-low-temperature reactions of carbon atoms with hydrogen molecules. Astrophys. J. Lett. 818, L31 (2016).

    Article  ADS  Google Scholar 

  10. Lee, Y. T. Molecular-beam studies of elementary chemical processes. Science 236, 793–798 (1987).

    Article  ADS  Google Scholar 

  11. Lee, Y. T. Molecular-beam studies of elementary chemical processes (Nobel lecture). Angew. Chem. Int. Ed. 26, 939–951 (1987).

    Article  Google Scholar 

  12. Schauermann, S., Silbaugh, T. L. & Campbell, C. T. Single-crystal adsorption calorimetry on well-defined surfaces: from single crystals to supported nanoparticles. Chem. Rec. 14, 759–774 (2014).

    Article  Google Scholar 

  13. Toennies, J. P. & Vilesov, A. F. Superfluid helium droplets: a uniquely cold nanomatrix for molecules and molecular complexes. Angew. Chem. Int. Ed. 43, 2622–2648 (2004).

    Article  Google Scholar 

  14. Schollkopf, W. & Toennies, J. P. Nondestructive mass selection of small van-der-Waals clusters. Science 266, 1345–1348 (1994).

    Article  ADS  Google Scholar 

  15. Goyal, S., Schutt, D. L. & Scoles, G. Vibrational spectroscopy of sulfur-hexafluoride attached to helium clusters. Phys. Rev. Lett. 69, 933–936 (1992).

    Article  ADS  Google Scholar 

  16. Mozhayskiy, V., Slipchenko, M. N., Adamchuk, V. K. & Vilesov, A. F. Use of helium nanodroplets for assembly, transport, and surface deposition of large molecular and atomic clusters. J. Chem. Phys. 127, 094701–094706 (2007).

    Article  ADS  Google Scholar 

  17. Krasnokutski, S. A. & Huisken, F. Oxidative reactions of silicon atoms and clusters at ultralow temperature in helium droplets. J. Phys. Chem. A 114, 13045–13049 (2010).

    Article  Google Scholar 

  18. Krasnokutski, S. A. & Huisken, F. Low-temperature chemistry in helium droplets: reactions of aluminum atoms with O2 and H2O. J. Phys. Chem. A 115, 7120–7126 (2011).

    Article  Google Scholar 

  19. Krasnokutski, S. A., Huisken, F., Jäger, C. & Henning, T. Growth and destruction of PAH molecules in reactions with carbon atoms. Astrophys. J. 836, 32 (2017).

    Article  ADS  Google Scholar 

  20. Krasnokutski, S. A. & Huisken, F. Ultra-low-temperature reactions of C(3 P 0) atoms with benzene molecules in helium droplets. J. Chem. Phys. 141, 214306 (2014).

    Article  ADS  Google Scholar 

  21. Krasnokutski, S. A. et al. Formation of silicon oxide grains at low temperature. Astrophys. J. 782, 15 (2014).

    Article  ADS  Google Scholar 

  22. Lewis, W. K., Harruff-Miller, B. A., Leatherman, P., Gord, M. A. & Bunker, C. E. Helium droplet calorimetry of strongly bound species: carbon clusters from C2 to C12. Rev. Sci. Instrum. 85, 094102 (2014).

    Article  ADS  Google Scholar 

  23. Dutra, M. & Hinde, R. Accurate simulations of helium pick-up experiments using a rejection-free Monte Carlo method. AIP Adv. 8, 045203 (2018).

    Article  ADS  Google Scholar 

  24. Loginov, E. et al. Photoabsorption of AgN (N ~ 6–6000) nanoclusters formed in helium droplets: transition from compact to multicenter aggregation. Phys. Rev. Lett. 106, 233401–233404 (2011).

    Article  ADS  Google Scholar 

  25. Eyler, E. E. & Melikechi, N. Near-threshold continuum structure and the dissociation-energies of H2, HD, and D2. Phys. Rev. A 48, R18–R21 (1993).

    Article  ADS  Google Scholar 

  26. Csaszar, A. G., Leininger, M. L. & Szalay, V. The standard enthalpy of formation of CH2. J. Chem. Phys. 118, 10631–10642 (2003).

    Article  ADS  Google Scholar 

  27. Harding, L. B., Guadagnini, R. & Schatz, G. C. Theoretical-studies of the reactions H + CH → C + H2 and C + H2 → CH2 using an abinitio global ground-state potential surface for CH2. J. Phys. Chem. 97, 5472–5481 (1993).

    Article  Google Scholar 

  28. Takahashi, J. & Yamashita, K. Ab initio studies on the interstellar molecules C3H2 and C3H and the mechanism for the neutral–neutral reaction C(3 P) + C2H2. J. Chem. Phys. 104, 6613–6627 (1996).

    Article  ADS  Google Scholar 

  29. Kaiser, R. I., Ochsenfeld, C., Head-Gordon, M., Lee, Y. T. & Suits, A. G. Crossed-beam reaction of carbon atoms with hydrocarbon molecules. III: Chemical dynamics of propynylidyne (l-C3H;X2Πj) and cyclopropynylidyne (c-C3H;X2 B 2) formation from reaction of C(3 P j) with acetylene, C2H2(X1Σ+ g). J. Chem. Phys. 106, 1729–1741 (1997).

    Article  ADS  Google Scholar 

  30. Walker, A. V. & King, D. A. Reaction of gaseous oxygen with adsorbed carbon on Pt{110}(1×2). J. Chem. Phys. 112, 1937–1945 (2000).

    Article  ADS  Google Scholar 

  31. Ruscic, B., Feller, D. & Peterson, K. A. Active thermochemical tables: dissociation energies of several homonuclear first-row diatomics and related thermochemical values. Theor. Chem. Acc. 133, 1415 (2013).

    Article  Google Scholar 

  32. Minissale, M., Congiu, E., Manico, G., Pirronello, V. & Dulieu, F. CO2 formation on interstellar dust grains: a detailed study of the barrier of the CO plus O channel. Astron. Astrophys. 559, A49 (2013).

    Article  ADS  Google Scholar 

  33. Spielfiedel, A. et al. Bent valence excited states of CO2. J. Chem. Phys. 97, 8382–8388 (1992).

    Article  ADS  Google Scholar 

  34. Lu, Z., Chang, Y. C., Yin, Q. Z., Ng, C. Y. & Jackson, W. M. Evidence for direct molecular oxygen production in CO2 photodissociation. Science 346, 61–64 (2014).

    Article  ADS  Google Scholar 

  35. Kobayashi, H. et al. Hydrogenation and deuteration of C2H2 and C2H4 on cold grains: a clue to the formation mechanism of C2H6 with astronomical interest. Astrophys. J. 837, 155 (2017).

    Article  ADS  Google Scholar 

  36. Lamberts, T. & Kastner, J. Influence of surface and bulk water ice on the reactivity of a water-forming reaction. Astrophys. J. 846, 43 (2017).

    Article  ADS  Google Scholar 

  37. Rimola, A., Taquet, V., Ugliengo, P., Balucani, N. & Ceccarelli, C. Combined quantum chemical and modeling study of CO hydrogenation on water ice. Astron. Astrophys. 572, A70 (2014).

    Article  ADS  Google Scholar 

  38. Harvey, L., Paule, S., Martin, C. & Maryvonne, G. The abundance of C3H2 and other small hydrocarbons in the diffuse interstellar medium. Astrophys. J. Lett. 753, L28 (2012).

    Article  Google Scholar 

  39. Henning, T. & Salama, F. Carbon in the Universe. Science 282, 2204–2210 (1998).

    Article  ADS  Google Scholar 

  40. Beuther, H. et al. Carbon in different phases ([CII], [CI], and CO) in infrared dark clouds: cloud formation signatures and carbon gas fractions. Astron. Astrophys. 571, A53 (2014).

    Article  Google Scholar 

  41. Krasnokutski, S. A. & Huisken, F. Resonant two-photon ionization spectroscopy of Al atoms and dimers solvated in helium nanodroplets. J. Chem. Phys. 142, 084311 (2015).

    Article  ADS  Google Scholar 

  42. Krasnokutski, S. A. & Huisken, F. A simple and clean source of low-energy atomic carbon. Appl. Phys. Lett. 105, 113506 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support by the Max Planck Society and the DFG (contract No. KR 3995/3-1).

Author information

Authors and Affiliations

Authors

Contributions

T.K.H. and S.A.K. designed the research and wrote the paper; S.A.K. performed research and analysed the data.

Corresponding author

Correspondence to Serge A. Krasnokutski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henning, T.K., Krasnokutski, S.A. Experimental characterization of the energetics of low-temperature surface reactions. Nat Astron 3, 568–573 (2019). https://doi.org/10.1038/s41550-019-0729-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-019-0729-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing