Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The diverse evolutionary pathways of post-starburst galaxies

Abstract

About 35 years ago a class of galaxies with unusually strong Balmer absorption lines and weak emission lines was discovered in distant galaxy clusters1,2. These objects, alternatively referred to as post-starburst, E+A or k+a galaxies, are now known to occur in all environments and at all redshifts3,4,5,6,7, with many exhibiting compact morphologies and low-surface brightness features indicative of past galaxy mergers3,8. They are commonly thought to represent galaxies that are transitioning from blue to red sequence, making them critical to our understanding of the origins of galaxy bimodality9,10,11,12,13,14. However, recent observational studies have questioned this simple interpretation15,16,17,18. From observations alone, it is challenging to disentangle the different mechanisms that lead to the quenching of star formation in galaxies. Here we present examples of three different evolutionary pathways that lead to galaxies with strong Balmer absorption lines in the Evolution and Assembly of GaLaxies and their Environments (EAGLE) simulation19,20: classical blue → red quenching, blue → blue cycle and red → red rejuvenation. The first two are found in both post-starburst galaxies and galaxies with truncated star formation. Each pathway is consistent with scenarios hypothesized for observational samples2,15,18,21,22. The fact that ‘post-starburst’ signatures can be attained via various evolutionary channels explains the diversity of observed properties, and lends support to the idea that slower quenching channels are important at low redshift23,24.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The evolution of the SFR, gas content and morphology of the four example EAGLE post-starburst galaxies as a function of lookback time from z = 0.1.
Fig. 2
Fig. 3

Data availability

The raw data used in this paper are available to download from the EAGLE public database http://icc.dur.ac.uk/Eagle/database.php. The case study galaxies presented here can be identified via their unique galaxyid. The database is described in refs. 40,69. The eigenvectors and PC amplitudes for SDSS DR7 spectra presented in Fig. 3 and Supplementary Fig. 4 are available for download from http://www-star.st-and.ac.uk/ vw8/downloads/DR7PCA.html. The PCA code and morphological analysis code are available for download from https://github.com/SEDMORPH. The spectral synthesis models used to build the spectra from the EAGLE star formation histories are available for download from http://www.bruzual.org/bc03/Updated_version_2016/.

References

  1. Dressler, A. & Gunn, J. E. Spectroscopy of galaxies in distant clusters. II—The population of the 3C 295 cluster. Astrophys. J. 270, 7–19 (1983).

    ADS  Article  Google Scholar 

  2. Couch, W. J. & Sharples, R. M. A spectroscopic study of three rich galaxy clusters at z = 0.31. Mon. Not. R. Astron. Soc. 229, 423–456 (1987).

    ADS  Article  Google Scholar 

  3. Zabludoff, A. I. et al. The environment of ‘E+A’ galaxies. Astrophys. J. 466, 104 (1996).

    ADS  Article  Google Scholar 

  4. Yan, R. et al. The DEEP2 Galaxy Redshift Survey: environments of post-starburst galaxies at z 0.1 and 0.8. Mon. Not. R. Astron. Soc. 398, 735–753 (2009).

    ADS  Article  Google Scholar 

  5. Wild, V. et al. The evolution of post-starburst galaxies from z = 2 to 0.5. Mon. Not. R. Astron. Soc. 463, 832–844 (2016).

    ADS  Article  Google Scholar 

  6. Paccagnella, A. et al. OmegaWINGS: the first complete census of post-starburst galaxies in clusters in the local universe. Astrophys. J. 838, 148 (2017).

    ADS  Article  Google Scholar 

  7. Socolovsky, M. et al. The enhancement of rapidly quenched galaxies in distant clusters at 0.5 < z < 1.0. Mon. Not. R. Astron. Soc. 476, 1242–1257 (2018).

    ADS  Article  Google Scholar 

  8. Almaini, O. et al. Massive post-starburst galaxies at z > 1 are compact proto-spheroids. Mon. Not. R. Astron. Soc. 472, 1401–1412 (2017).

    ADS  Article  Google Scholar 

  9. Tran, K.-V. H., Franx, M., Illingworth, G., Kelson, D. D. & van Dokkum, P. The nature of E+A galaxies in intermediate-redshift clusters. Astrophys. J. 599, 865–885 (2003).

    ADS  Article  Google Scholar 

  10. Yang, Y., Zabludoff, A. I., Zaritsky, D. & Mihos, J. C. The detailed evolution of E+A galaxies into early types. Astrophys. J. 688, 945–971 (2008).

    ADS  Article  Google Scholar 

  11. Wild, V. et al. Post-starburst galaxies: more than just an interesting curiosity. Mon. Not. R. Astron. Soc. 395, 144–159 (2009).

    ADS  Article  Google Scholar 

  12. Swinbank, A. M. et al. The properties of the star-forming interstellar medium at z = 0.84–2.23 from hizels: mapping the internal dynamics and metallicity gradients in high-redshift disc galaxies. Mon. Not. R. Astron. Soc. 426, 935–950 (2012).

    ADS  Article  Google Scholar 

  13. Wong, O. I. et al. Galaxy Zoo: building the low-mass end of the red sequence with local post-starburst galaxies. Mon. Not. R. Astron. Soc. 420, 1684–1692 (2012).

    ADS  Article  Google Scholar 

  14. Pawlik, M. M. et al. Shape asymmetry: a morphological indicator for automatic detection of galaxies in the post-coalescence merger stages. Mon. Not. R. Astron. Soc. 456, 3032–3052 (2016).

    ADS  Article  Google Scholar 

  15. Dressler, A. et al. The IMACS Cluster Building Survey. II. Spectral evolution of galaxies in the epoch of cluster assembly. Astrophys. J. 770, 62 (2013).

    ADS  Article  Google Scholar 

  16. French, K. D. et al. Discovery of large molecular gas reservoirs in post-starburst galaxies. Astrophys. J. 801, 1 (2015).

    ADS  Article  Google Scholar 

  17. Rowlands, K. et al. The evolution of the cold interstellar medium in galaxies following a starburst. Mon. Not. R. Astron. Soc. 448, 258–279 (2015).

    ADS  Article  Google Scholar 

  18. Pawlik, M. M. et al. The origins of post-starburst galaxies at z < 0.05. Mon. Not. R. Astron. Soc. 477, 1708–1743 (2018).

    ADS  Article  Google Scholar 

  19. Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 446, 521–554 (2015).

    ADS  Article  Google Scholar 

  20. Crain, R. A. et al. The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations. Mon. Not. R. Astron. Soc. 450, 1937–1961 (2015).

    ADS  Article  Google Scholar 

  21. Balogh, M. L., Morris, S. L., Yee, H. K. C., Carlberg, R. G. & Ellingson, E. Differential galaxy evolution in cluster and field galaxies at z ~ 0.3. Astrophys. J. 527, 54–79 (1999).

    ADS  Article  Google Scholar 

  22. Abramson, L. E. et al. The IMACS Cluster Building Survey. V. Further evidence for starburst recycling from quantitative galaxy morphologies. Astrophys. J. 777, 124 (2013).

    ADS  Article  Google Scholar 

  23. Trayford, J. W. et al. It is not easy being green: the evolution of galaxy colour in the EAGLE simulation. Mon. Not. R. Astron. Soc. 460, 3925–3939 (2016).

    ADS  Article  Google Scholar 

  24. Rowlands, K. et al. Galaxy and Mass Assembly (GAMA): the mechanisms for quiescent galaxy formation at z < 1. Mon. Not. R. Astron. Soc. 473, 1168–1185 (2018).

    ADS  Article  Google Scholar 

  25. Bekki, K., Couch, W. J., Shioya, Y. & Vazdekis, A. Origin of E+A galaxies—I. Physical properties of E+A galaxies formed from galaxy merging and interaction. Mon. Not. R. Astron. Soc. 359, 949–965 (2005).

    ADS  Article  Google Scholar 

  26. Snyder, G. F., Cox, T. J., Hayward, C. C., Hernquist, L. & Jonsson, P. K+A galaxies as the aftermath of gas-rich mergers: simulating the evolution of galaxies as seen by spectroscopic surveys. Astrophys. J. 741, 77 (2011).

    ADS  Article  Google Scholar 

  27. French, K. D. et al. Why post-starburst galaxies are now quiescent. Astrophys. J. 861, 123 (2018).

    ADS  Article  Google Scholar 

  28. Pillepich, A. et al. Simulating galaxy formation with the illustristng model. Mon. Not. R. Astron. Soc. 473, 4077–4106 (2018).

    ADS  Article  Google Scholar 

  29. French, K. D., Yang, Y., Zabludoff, A. I. & Tremonti, C. A. Clocking the evolution of post-starburst galaxies: methods and first results. Astrophys. J. 862, 2 (2018).

    ADS  Article  Google Scholar 

  30. Lotz, J. M., Jonsson, P., Cox, T. J. & Primack, J. R. Galaxy merger morphologies and time-scales from simulations of equal-mass gas-rich disc mergers. Mon. Not. R. Astron. Soc. 391, 1137–1162 (2008).

    ADS  Article  Google Scholar 

  31. Mendel, J. T., Simard, L., Ellison, S. L. & Patton, D. R. Towards a physical picture of star formation quenching: the photometric properties of recently quenched galaxies in the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 429, 2212–2227 (2013).

    ADS  Article  Google Scholar 

  32. Dressler, A. et al. A spectroscopic catalog of 10 distant rich clusters of galaxies. Astrophys. J. Suppl. Ser. 122, 51–80 (1999).

    ADS  Article  Google Scholar 

  33. Oemler, A. Jr., Dressler, A. & Butcher, H. R. The morphology of distant cluster galaxies. II. HST observations of four rich clusters at z = 0.4. Astrophys. J. 474, 561–575 (1997).

    ADS  Article  Google Scholar 

  34. Springel, V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364, 1105–1134 (2005).

    ADS  Article  Google Scholar 

  35. Rosas-Guevara, Y. M. et al. The impact of angular momentum on black hole accretion rates in simulations of galaxy formation. Mon. Not. R. Astron. Soc. 454, 1038–1057 (2015).

    ADS  Article  Google Scholar 

  36. Schaye, J. et al. The physics driving the cosmic star formation history. Mon. Not. R. Astron. Soc. 402, 1536–1560 (2010).

    ADS  Article  Google Scholar 

  37. Crain, R. A. et al. Galaxies–intergalactic medium interaction calculation—I. Galaxy formation as a function of large-scale environment. Mon. Not. R. Astron. Soc. 399, 1773–1794 (2009).

    ADS  Article  Google Scholar 

  38. Le Brun, A. M. C., McCarthy, I. G., Schaye, J. & Ponman, T. J. Towards a realistic population of simulated galaxy groups and clusters. Mon. Not. R. Astron. Soc. 441, 1270–1290 (2014).

    ADS  Article  Google Scholar 

  39. Planck Collaboration et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014).

    Article  Google Scholar 

  40. McAlpine, S. et al. The EAGLE simulations of galaxy formation: public release of halo and galaxy catalogues. Astron. Comput. 15, 72–89 (2016).

    ADS  Article  Google Scholar 

  41. Furlong, M. et al. Evolution of galaxy stellar masses and star formation rates in the EAGLE simulations. Mon. Not. R. Astron. Soc. 450, 4486–4504 (2015).

    ADS  Article  Google Scholar 

  42. Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003).

    ADS  Article  Google Scholar 

  43. Sánchez-Blázquez, P. et al. Medium-resolution isaac newton telescope library of empirical spectra. Mon. Not. R. Astron. Soc. 371, 703–718 (2006).

    ADS  Article  Google Scholar 

  44. da Cunha, E., Charlot, S. & Elbaz, D. A simple model to interpret the ultraviolet, optical and infrared emission from galaxies. Mon. Not. R. Astron. Soc. 388, 1595–1617 (2008).

    ADS  Article  Google Scholar 

  45. Wild, V. et al. Bursty stellar populations and obscured active galactic nuclei in galaxy bulges. Mon. Not. R. Astron. Soc. 381, 543–572 (2007).

    ADS  Article  Google Scholar 

  46. Trayford, J. W. et al. Optical colours and spectral indices of z = 0.1 EAGLE galaxies with the 3D dust radiative transfer code skirt. Mon. Not. R. Astron. Soc. 470, 771–799 (2017).

    ADS  Article  Google Scholar 

  47. Goto, T. et al. Hδ-strong galaxies in the Sloan Digital Sky Survey: I. The catalog. Publ. Astron. Soc. Jpn 55, 771–787 (2003).

    ADS  Article  Google Scholar 

  48. Tremonti, C. A., Moustakas, J. & Diamond-Stanic, A. M. The discovery of 1000 km s−1 outflows in massive poststarburst galaxies at z = 0.6. Astrophys. J. Lett. 663, L77–L80 (2007).

    ADS  Article  Google Scholar 

  49. Yan, R. et al. On the origin of [O ii] emission in red-sequence and poststarburst galaxies. Astrophys. J. 648, 281–298 (2006).

    ADS  Article  Google Scholar 

  50. Alatalo, K. et al. Shocked poststarbust galaxy survey. I. Candidate post-starbust galaxies with emission line ratios consistent with shocks. Astrophys. J. Suppl. Ser. 224, 38 (2016).

    ADS  Article  Google Scholar 

  51. Quintero, A. D. et al. Selection and photometric properties of K+A galaxies. Astrophys. J. 602, 190–199 (2004).

    ADS  Article  Google Scholar 

  52. Nolan, L. A., Raychaudhury, S. & Kabán, A. Young stellar populations in early-type galaxies in the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 375, 381–387 (2007).

    ADS  Article  Google Scholar 

  53. Balogh, M. L., Miller, C., Nichol, R., Zabludoff, A. & Goto, T. Near-infrared imaging of 222 nearby Hδ-strong galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 360, 587–609 (2005).

    ADS  Article  Google Scholar 

  54. von der Linden, A., Wild, V., Kauffmann, G., White, S. D. M. & Weinmann, S. Star formation and activity in SDSS cluster galaxies. Mon. Not. R. Astron. Soc. 404, 1231–1246 (2010).

    ADS  Google Scholar 

  55. Kauffmann, G. et al. The dependence of star formation history and internal structure on stellar mass for 105 low-redshift galaxies. Mon. Not. R. Astron. Soc. 341, 54–69 (2003).

    ADS  Article  Google Scholar 

  56. Abazajian, K. N. et al. The seventh data release of the Sloan Digital Sky Survey. Astrophys. J. Suppl. Ser. 182, 543–558 (2009).

    ADS  Article  Google Scholar 

  57. Goto, T. A catalogue of local E+A (post-starburst) galaxies selected from the Sloan Digital Sky Survey Data release 5. Mon. Not. R. Astron. Soc. 381, 187–193 (2007).

    ADS  Article  Google Scholar 

  58. Trayford, J. W. et al. Colours and luminosities of z = 0.1 galaxies in the EAGLE simulation. Mon. Not. R. Astron. Soc. 452, 2879–2896 (2015).

    ADS  Article  Google Scholar 

  59. Wild, V. et al. Empirical determination of the shape of dust attenuation curves in star-forming galaxies. Mon. Not. R. Astron. Soc. 417, 1760–1786 (2011).

    ADS  Article  Google Scholar 

  60. Chevallard, J., Charlot, S., Wandelt, B. & Wild, V. Insights into the content and spatial distribution of dust from the integrated spectral properties of galaxies. Mon. Not. R. Astron. Soc. 432, 2061–2091 (2013).

    ADS  Article  Google Scholar 

  61. Cid Fernandes, R., Mateus, A., Sodré, L., Stasińska, G. & Gomes, J. M. Semi-empirical analysis of Sloan Digital Sky Survey galaxies—I. Spectral synthesis method. Mon. Not. R. Astron. Soc. 358, 363–378 (2005).

    ADS  Article  Google Scholar 

  62. Davis, T. A. et al. Evolution of the cold gas properties of simulated post-starburst galaxies. Mon. Not. R. Astron. Soc. 484, 2447–2461 (2018).

    ADS  Article  Google Scholar 

  63. Di Matteo, P. et al. On the frequency, intensity, and duration of starburst episodes triggered by galaxy interactions and mergers. Astron. Astrophys. 492, 31–49 (2008).

    ADS  Article  Google Scholar 

  64. Lagos, Cd. P. et al. Angular momentum evolution of galaxies in EAGLE. Mon. Not. R. Astron. Soc. 464, 3850–3870 (2017).

    ADS  Article  Google Scholar 

  65. Baes, M. et al. Radiative transfer in disc galaxies—III. The observed kinematics of dusty disc galaxies. Mon. Not. R. Astron. Soc. 343, 1081–1094 (2003).

    ADS  Article  Google Scholar 

  66. Camps, P. & Baes, M. SKIRT: an advanced dust radiative transfer code with a user-friendly architecture. Astron. Comput. 9, 20–33 (2015).

    ADS  Article  Google Scholar 

  67. Groves, B. et al. Modeling the pan-spectral energy distribution of starburst galaxies. IV. The controlling parameters of the starburst sed. Astrophys. J. Suppl. Ser. 176, 438–456 (2008).

    ADS  Article  Google Scholar 

  68. Bershady, M. A., Jangren, A. & Conselice, C. J. Structural and photometric classification of galaxies. I. Calibration based on a nearby galaxy sample. Astron. J. 119, 2645–2663 (2000).

    ADS  Article  Google Scholar 

  69. The EAGLE team The EAGLE simulations of galaxy formation: public release of particle data. Preprint at https://arxiv.org/abs/1706.09899 (2017).

Download references

Acknowledgements

M.M.P. and V.W. acknowledge support of the European Research Council (SEDMorph, principal investigator V.W.). S.M. acknowledges support from the Academy of Finland, grant number 314238. R.A.C. is a Royal Society University Research Fellow. V.W. thanks A. Werle for his help investigating the PC amplitude offsets. This work was supported by the Science and Technology Facilities Council (grant number ST/P000541/1). This work used the DiRAC Data Centric system at Durham University, operated by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment was funded by BIS National E-infrastructure capital grant ST/K00042X/1, STFC capital grant ST/H008519/1 and STFC DiRAC Operations grant ST/K003267/1 and Durham University. DiRAC is part of the National E-Infrastructure.

Author information

Authors and Affiliations

Authors

Contributions

M.M.P. led the analysis and writing of the manuscript, with significant input from S.M. and J.W.T. who provided the EAGLE data and associated analysis products. V.W. conceived the initial idea, supported M.M.P. throughout the project and led the response to the referees reports. R.B., R.A.C., M.S. and J.S. are builders of the EAGLE simulation. They read and commented on the manuscript.

Corresponding author

Correspondence to V. Wild.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figure 4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pawlik, M.M., McAlpine, S., Trayford, J.W. et al. The diverse evolutionary pathways of post-starburst galaxies. Nat Astron 3, 440–446 (2019). https://doi.org/10.1038/s41550-019-0725-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-019-0725-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing