Dynamics of a massive binary at birth


Almost all massive stars have bound stellar companions, existing in binaries or higher-order multiples1,2,3,4,5. While binarity is theorized to be an essential feature of how massive stars form6, essentially all information about such properties is derived from observations of already formed stars, whose orbital properties may have evolved since birth. Little is known about binarity during formation stages. Here we report high-angular-resolution observations of 1.3 mm continuum and H30α recombination line emission, which reveal a massive protobinary with apparent separation of 180 au at the centre of the massive star-forming region IRAS 07299-1651. From the line-of-sight velocity difference of 9.5 km s−1 of the two protostars, the binary is estimated to have a minimum total mass of 18 solar masses, consistent with several other metrics, and maximum period of 570 yr, assuming a circular orbit. The H30α line from the primary protostar shows kinematics consistent with rotation along a ring of radius of 12 au. The observations indicate that disk fragmentation at several hundred astronomical units may have formed the binary, and much smaller disks are feeding the individual protostars.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Maps of the 1.3 mm continuum and H30α line emissions.
Fig. 2: H30α line spectra at the continuum peak positions.
Fig. 3: Dynamical constraints on the binary properties.
Fig. 4: Distributions of the H30α emission centroids in Source A and comparison with the model.

Data availability

This paper makes use of the following ALMA data: ADS/JAO.ALMA#2015.1.01454.S, ADS/JAO.ALMA#2016.1.00125.S. The data are available at https://almascience.nao.ac.jp/aq by setting the observation codes. The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Chini, R., Hoffmeister, V. H., Nasseri, A., Stahl, O. & Zinnecker, H. A spectroscopic survey on the multiplicity of high-mass stars. Mon. Not. R. Astron. Soc. 424, 1925–1929 (2012).

    ADS  Article  Google Scholar 

  2. 2.

    Sana, H. et al. Binary interaction dominates the evolution of massive stars. Science 337, 444–446 (2012).

    ADS  Article  Google Scholar 

  3. 3.

    Peter, D., Feldt, M., Henning, Th & Hormuth, F. Massive binaries in the cepheus OB2/3 region. Constraining the formation mechanism of massive stars. Astron. Astrophys. 538, A74 (2012).

    ADS  Article  Google Scholar 

  4. 4.

    Almeida, L. A. et al. The Tarantula Massive Binary Monitoring: I. Observational campaign and OB-type spectroscopic binaries. Astron. Astrophys. 598, A84 (2017).

    Article  Google Scholar 

  5. 5.

    Moe, M. & Di Stefano, R. Mind your Ps and Qs: the interrelation between period (P) and mass-ratio (Q) distributions of binary stars. Astrophys. J. Suppl. Ser. 230, 15 (2017).

    ADS  Article  Google Scholar 

  6. 6.

    Kratter, K. M., Matzner, C. D., Krumholz, M. R. & Klein, R. I. On the role of disks in the formation of stellar systems: a numerical parameter study of rapid accretion. Astrophys. J. 708, 1585–1597 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    De Buizer, J. M. et al. The SOFIA Massive (SOMA) Star Formation Survey. I. Overview and first results. Astrophys. J. 843, 33 (2017).

    ADS  Article  Google Scholar 

  8. 8.

    Reid, M. J. et al. Trigonometric parallaxes of massive star-forming regions. I. S252 & G232.6+1.0. Astrophys. J. 693, 397–405 (2009).

    ADS  Article  Google Scholar 

  9. 9.

    Tanaka, K., Tan, J. C. & Zhang, Y. Outflow-confined H ii regions. I. First signposts of massive star formation. Astrophys. J. 818, 52 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Keto, E., Zhang, Q. & Kurtz, S. The early evolution of massive stars: radio recombination line spectra. Astrophys. J. 672, 423–432 (2008).

    ADS  Article  Google Scholar 

  11. 11.

    Keto, E. The formation of massive stars by accretion through trapped hypercompact H ii regions. Astrophys. J. 599, 1196–1206 (2003).

    ADS  Article  Google Scholar 

  12. 12.

    Keto, E. & Wood, K. Observations on the formation of massive stars by accretion. Astrophys. J. 637, 850–859 (2006).

    ADS  Article  Google Scholar 

  13. 13.

    Guzmán, A. E. et al. The slow ionized wind and rotating disklike system that are associated with the high-mass young stellar object G345.4938+01.4677. Astrophys. J. 796, 117 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Zhang, Q., Claus, B., Watson, L. & Moran, J. Angular momentum in disk wind revealed in the young star MWC 349A. Astrophys. J. 837, 53 (2017).

    ADS  Article  Google Scholar 

  15. 15.

    Sakai, N. et al. Change in the chemical composition of infalling gas forming a disk around a protostar. Nature 507, 78–80 (2014).

    ADS  Article  Google Scholar 

  16. 16.

    Sridharan, T. K., Williams, S. J. & Fuller, G. A. The direct detection of a (proto)binary/disk system in IRAS 20126+4104. Astrophys. J. Lett. 631, L73–L76 (2005).

    ADS  Article  Google Scholar 

  17. 17.

    Beltrán, M. T. et al. Binary system and jet precession and expansion in G35.20-0.74N. Astron. Astrophys. 593, A49 (2016).

    Article  Google Scholar 

  18. 18.

    Beuther, H., Linz, H., Henning, Th., Feng, S. & Teague, R. Multiplicity and disks within the high-mass core NGC 7538IRS1. Resolving cm line and continuum emission at 0.06″ × 0.05″. Astron. Astrophys. 605, A61 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Kraus, S. et al. A high-mass protobinary system with spatially resolved circumstellar accretion disks and circumbinary disk. Astrophys. J. Lett. 835, L5 (2017).

    ADS  Article  Google Scholar 

  20. 20.

    McKee, C. F. & Tan, J. C. The formation of massive stars from turbulent cores. Astrophys. J. 585, 850–871 (2003).

    ADS  Article  Google Scholar 

  21. 21.

    Bonnell, I. A., Bate, M. R., Clarke, C. J. & Pringle, J. E. Competitive accretion in embedded stellar clusters. Mon. Not. R. Astron. Soc. 322, 785–794 (2001).

    ADS  Article  Google Scholar 

  22. 22.

    Myers, A. T., McKee, C. F., Cunningham, A. J., Klein, R. I. & Krumholz, M. R. The fragmentation of magnetized, massive star-forming cores with radiative feedback. Astrophys. J. 766, 97 (2013).

    ADS  Article  Google Scholar 

  23. 23.

    Takakuwa, S. et al. Spiral arms, infall, and misalignment of the circumbinary disk from the circumstellar disks in the protostellar binary system L1551 NE. Astrophys. J. 837, 86 (2017).

    ADS  Article  Google Scholar 

  24. 24.

    McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. ASP Conf. Ser. 376, 127–130 (2007).

    ADS  Google Scholar 

  25. 25.

    Klaassen, P. D. et al. The evolution of young H ii regions. I. Continuum emission and internal dynamics. Astron. Astrophys. 611, A99 (2018).

    Article  Google Scholar 

  26. 26.

    Zhang, C.-P., Wang, J.-J., Xu, J.-L., Wyrowski, F. & Menten, K. M. Submillimeter array and very large array observations in the hypercompact H ii region G35.58–0.03. Astrophys. J. 784, 107 (2014).

    ADS  Article  Google Scholar 

  27. 27.

    Araya, E. et al. A search for formaldehyde 6 cm emission toward young stellar objects. II. H2CO and H110α observations. Astrophys. J. Suppl. Ser. 170, 152–174 (2007).

    ADS  Article  Google Scholar 

  28. 28.

    Liu, T., Wu, Y.-F. & Wang, K. A search for massive young stellar objects towards 98 CH3OH maser sources. Res. Astron. Astrophys. 10, 67–82 (2010).

    ADS  Article  Google Scholar 

  29. 29.

    Wilson, T. L., Rohlfs, K. & Hüttemeister, S. Tools of Radio Astronomy (Springer, Berlin, 2013).

  30. 30.

    Shaver, P. A., McGee, R. X., Newton, L. M., Danks, A. C. & Pottasch, S. R. The galactic abundance gradient. Mon. Not. R. Astron. Soc. 204, 53–112 (1983).

    ADS  Article  Google Scholar 

  31. 31.

    Schmiedeke, A. et al. The physical and chemical structure of Sagittarius B2. I. Three-dimensional thermal dust and free-free continuum modeling on 100 au to 45 pc scales. Astron. Astrophys. 588, A143 (2016).

    Article  Google Scholar 

  32. 32.

    Davies, B. et al. The Red MSX Source Survey: critical tests of accretion models for the formation of massive stars. Mon. Not. R. Astron. Soc. 416, 972–990 (2011).

    ADS  Article  Google Scholar 

  33. 33.

    Meynet, G. & Maeder, A. Stellar evolution with rotation. V. Changes in all the outputs of massive star models. Astron. Astrophys. 361, 101–120 (2000).

    ADS  Google Scholar 

  34. 34.

    Lanz, T. & Hubeny, I. A. Grid of NLTE line-blanketed model atmospheres of early B-type stars. Astrophys. J. Suppl. Ser. 169, 83–104 (2007).

    ADS  Article  Google Scholar 

  35. 35.

    Mottram, J. C. et al. The RMS survey: the luminosity functions and timescales of massive young stellar objects and compact H ii regions. Astrophys. J. Lett. 730, L33 (2011).

    ADS  Article  Google Scholar 

  36. 36.

    Zhang, Y. & Tan, J. C. Radiation transfer of models of massive star formation. IV. The model grid and spectral energy distribution fitting. Astrophys. J. 853, 18 (2018).

    ADS  Article  Google Scholar 

  37. 37.

    Zhang, Y., Tan, J. C. & Hosokawa, T. Radiation transfer of models of massive star formation. III. The evolutionary sequence. Astrophys. J. 788, 166 (2014).

    ADS  Article  Google Scholar 

  38. 38.

    Beltrán, M. T. et al. Accelerating infall and rotational spin-up in the hot molecular core G31.41+0.31. Astron. Astrophys. 615, A141 (2018).

    Article  Google Scholar 

  39. 39.

    Ossenkopf, V. & Henning, T. Dust opacities for protostellar cores. Astron. Astrophys. 291, 943–959 (1994).

    ADS  Google Scholar 

  40. 40.

    Zhang, Y., Tan, J. C. & McKee, C. F. Radiation transfer of models of massive star formation. II. Effects of the outflow. Astrophys. J. 766, 86 (2013).

    ADS  Article  Google Scholar 

  41. 41.

    Condon, J. J. Errors in elliptical Gaussian fits. Publ. Astron. Soc. Pac. 109, 166–172 (1997).

    ADS  Article  Google Scholar 

  42. 42.

    Sánchez-Monge, Á. et al. A candidate circumbinary Keplerian disk in G35.20–0.74N: a study with ALMA. Astron. Astrophys. 552, L10 (2013).

    ADS  Article  Google Scholar 

  43. 43.

    Ilee,J. D. et al. G11.92-0.61 MM1: a Keplerian disc around a massive young proto-O star. Mon. Not. R. Astron. Soc. 462, 4386–4401 (2016).

    ADS  Article  Google Scholar 

Download references


The authors thank N. Sakai for valuable discussions. ALMA is a partnership of ESO (representing its member states), NSF (United States) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Y.Z. acknowledges support from RIKEN Special Postdoctoral Researcher Program. J.C.T. acknowledges support from NSF grant AST1411527 and ERC Advanced Grant project MSTAR. K.E.I.T. acknowledges support from NAOJ ALMA Scientific Research Grant Number 2017-05A. D.M. and G.G. acknowledge support from CONICYT project Basal AFB-170002.

Author information




Y.Z. led part of the ALMA observations, performed the data analysis, led the discussions and drafted the manuscript. J.C.T. led part of the ALMA observation, and participated in the discussions and drafting manuscript. K.E.I.T. contributed to the discussions. The rest of the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Yichen Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Supplementary references, Supplementary Figures 1–6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Tan, J.C., Tanaka, K.E.I. et al. Dynamics of a massive binary at birth. Nat Astron 3, 517–523 (2019). https://doi.org/10.1038/s41550-019-0718-y

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing