Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deep and methane-rich lakes on Titan

An Author Correction to this article was published on 13 June 2019

This article has been updated


Saturn’s largest moon, Titan, hosts liquid hydrocarbon lakes and seas on its surface. During the last close encounter with Titan (22 April 2017), the Cassini spacecraft used its RADAR as a sounder to probe the depth of several lakes in the north polar terrain. This was the first time that Titan’s lakes, as opposed to its seas, have been viewed in a sounding configuration. Here, we show that these lakes can exceed 100 m depth and their transparency at the 2.17 cm radar wavelength indicates that they have a methane-dominated composition. This composition differs significantly from that of Ontario Lacus, the only major lake in Titan’s southern hemisphere, which is more ethane rich. If the methane-rich north polar lakes, perched hundreds of metres above the major seas, are formed by a karstic-type process, then they may drain by subsurface flow at rates between 0.001 and 1 m yr−1 (Titan year). Subsurface reservoirs and flows therefore may be an important element of the Titan geochemical system.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cassini RADAR image mosaic and altimetry tracks acquired during the Cassini mission on the norther polar region of Titan.
Fig. 2: Intercepted lakes from radar altimetry on T126 flyby.
Fig. 3: Bathymetry and liquid attenuation of Winnipeg Lacus.
Fig. 4: Ambiguous lakefloor detections of Oneida Lacus and lake C.
Fig. 5: Comparison of Ligeia Mare and lake surface backscattering during flyby T91 (23 May 2013) and T126 (22 April 2017).
Fig. 6: Ligeia Mare and Winnipeg Lacus waveforms acquired at similar depths.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Long Burst Data Record products are available from NASA Planetary Data System (

Change history

  • 13 June 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. Elachi, C. et al. Radar: the Cassini Titan radar mapper. Space Sci. Rev. 115, 71–110 (2004).

    Article  ADS  Google Scholar 

  2. Stofan, E. R. et al. The lakes of Titan. Nature 445, 61–64 (2007).

    Article  ADS  Google Scholar 

  3. Hayes, A. G. et al. Hydrocarbon lakes on Titan: distribution and interaction with a porous regolith. Geophys. Res. Lett. 35, L09204 (2008).

    Article  ADS  Google Scholar 

  4. Hayes, A. G. The lakes and seas of titan. Annu. Rev. Earth Space Sci. 44, 57–83 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  5. Hayes, A. G., Lorenz, R. D. & Lunine, J. I. A post Cassini view of Titan’s methane-based hydrologic cycle. Nat. Geosci. 11, 306–313 (2018).

    Article  ADS  Google Scholar 

  6. Corlies, P. et al. Titan’s topography and shape at the end of the Cassini mission. Geophys. Res. Lett. 44, 11754–11761 (2017).

    Article  ADS  Google Scholar 

  7. Hayes, A. G. et al. Topographic constraints on the evolution and connectivity of Titan’s lacustrine basins. Geophys. Res. Lett. 44, 11745–11753 (2017).

    Article  ADS  Google Scholar 

  8. Birch, S. P. D. et al. Geomorphologic mapping of titan’s polar terrains: Constraining surface processes and landscape evolution. Icarus 282, 214–236 (2017).

    Article  ADS  Google Scholar 

  9. Cornet, T. et al. Dissolution on titan and on Earth: toward the age of Titan’s karstic landscapes. J. Geophys. Res. Planets 120, 1044–1074 (2015).

    Article  ADS  Google Scholar 

  10. Mastrogiuseppe, M. et al. The bathymetry of a Titan sea. Geophys. Res. Lett. 41, 1432–1437 (2014).

    Article  ADS  Google Scholar 

  11. Mastrogiuseppe, M. et al. Radar sounding using the Cassini altimeter: waveform modeling and Monte Carlo approach for data inversion of observations of Titan’s seas. IEEE Trans. Geosci. Remote Sens. 54, 5646–5656 (2016).

    Article  ADS  Google Scholar 

  12. Mastrogiuseppe, M. et al. Bathymetry and composition of Titan’s Ontario Lacus derived from Monte Carlo-based waveform inversion of Cassini RADAR altimetry data. Icarus 300, 203–209 (2018).

    Article  ADS  Google Scholar 

  13. Mastrogiuseppe, M. et al. Cassini radar observation of Punga Mare and environs: bathymetry and composition. Earth Planet. Sci. Lett. 496, 89–95 (2018).

    Article  ADS  Google Scholar 

  14. Alberti, G. et al. The processing of altimetric data (PAD) system for Cassini RADAR. Mem. Soc. Astron. Ital. Suppl. 11, 68 (2007).

    ADS  Google Scholar 

  15. Raguso, M. C., Mastrogiuseppe, M., Seu, R. & Piazzo, L. Super resolution and interferences suppression technique applied to SHARAD data. In 5th IEEE Int. Workshop Metrology for AeroSpace 242–246 (IEEE, 2018).

  16. Mitchell, K. L., Barmatz, M. B., Jamieson, C. S., Lorenz, R. D. & Lunine, J. I. Laboratory measurements of cryogenic liquid alkane microwave absorptivity and implications for the composition of Ligeia Mare, Titan. Geophys. Res. Lett. 42, 1340–1345 (2015).

    Article  ADS  Google Scholar 

  17. Poggiali, V. et al. Liquid-filled canyons on Titan. Geophys. Res. Lett. 43, 7887–7894 (2016).

    Article  ADS  Google Scholar 

  18. Zebker, H. et al. Surface of Ligeia Mare, Titan, from Cassini altimeter and radiometer analysis. Geophys. Res. Lett. 41, 308–313 (2014).

    Article  ADS  Google Scholar 

  19. Grima, C. et al. Surface roughness of Titan’s hydrocarbon seas. Earth Planet. Sci. Lett. 474, 20–24 (2017).

    Article  ADS  Google Scholar 

  20. Hayes, A. G. et al. Transient surface liquid in Titan’s polar regions from cassini. Icarus 211, 655–671 (2011).

    Article  ADS  Google Scholar 

  21. Hofgartner, J. D. et al. Titan’s "magic islands": transient features in a hydrocarbon sea. Icarus 271, 338–349 (2016).

    Article  ADS  Google Scholar 

  22. Le Gall, A. et al. Composition, seasonal change and bathymetry of Ligeia Mare, Titan, derived from its microwave thermal emission. J. Geophys. Res. Planets 121, 233–251 (2016).

    Article  ADS  Google Scholar 

  23. Janssen, M. A. et al. Titan’s surface at 2.18-cm wavelength imaged by the Cassini RADAR radiometer: results and interpretations through the first ten years of observation. Icarus 270, 443–459 (2016).

    Article  ADS  Google Scholar 

  24. Turtle, E. P. et al. Titan’s meteorology over the Cassini mission: evidence for extensive subsurface methane reservoirs. Geophys. Res. Lett. 45, 5320–5328 (2018).

    Article  ADS  Google Scholar 

  25. Aharonson, O. et al. An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing. Nat. Geosci. 2, 851–854 (2009).

    Article  ADS  Google Scholar 

  26. Dhingra, R. D. et al. Observational evidence for summer rainfall at Titan’s north pole. Geophys. Res. Lett. 46, 1205–1212 (2019).

    Article  ADS  Google Scholar 

  27. Cordier, D. et al. Structure of Titan’s evaporites. Icarus 270, 41–56 (2016).

    Article  ADS  Google Scholar 

  28. MacKenzie, S. M. & Barnes, J. W. Compositional similarities and distinctions between Titan’s evaporitic terrains. Astrophys. J. 821, 17 (2016).

    Article  ADS  Google Scholar 

  29. Mitchell, K. L., Malaska, M. J., Horvath, D. G. & Andrews-Hanna, J. C. Karstic processes on Earth and Titan. In 45th Lunar Planet. Sci. Conf. 2371 (LPI, 2008).

  30. Lorenz, R. D. & Lunine, J. I. Erosion on Titan: past and present. Icarus 122, 79–91 (1996).

    Article  ADS  Google Scholar 

  31. Malaska, M. J. & Hodyss, R. Dissolution of benzene, naphthalene, and biphenyl in a simulated Titan lake. Icarus 242, 74–81 (2014).

    Article  ADS  Google Scholar 

  32. Glein, C. R. & Shock, E. L. A geochemical model of non-ideal solutions in the methane–ethane–propane–nitrogen–acetylene system on Titan. Geochim. Cosmochim. Acta 115, 217–240 (2013).

    Article  ADS  Google Scholar 

  33. Lorenz, R. D. The flushing of Ligeia: composition variations across Titan’s seas in a simple hydrological model. Geophys. Res. Lett. 41, 5764–5770 (2014).

    Article  ADS  Google Scholar 

  34. Choukroun, M. & Sotin, C. Is Titan’s shape caused by its meteorology and carbon cycle? Geophys. Res. Lett. 39, L04201 (2012).

    Article  ADS  Google Scholar 

  35. Alberti, G., Festa, L., Papa, C. & Vingione, G. A waveform model for near-nadir radar altimetry applied to the Cassini mission to Titan. IEEE Trans. Geosci. Remote Sens. 47, 2252–2261 (2009).

    Article  ADS  Google Scholar 

  36. Bucciarelli, T. et al. Tracking algorithms in radar altimetry. In Int. Geosci. Remote Sensing Symp. (IGARSS’88) Vol. 2, 973–976 (IEEE, 1988).

  37. Mastrogiuseppe, M. et al. Titan dune heights retrieval by using Cassini radar altimeter. Icarus 230, 336–354 (2014).

    Article  Google Scholar 

  38. Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th edn (Cambridge Univ. Press, Cambridge, 1999).

    Book  Google Scholar 

  39. Zhang, Z. et al. Dielectric properties of the Martian south polar layered deposits: MARSIS data inversion using Bayesian inference and genetic algorithm. J. Geophys. Res. Planets 113, 5004 (2008).

    Article  ADS  Google Scholar 

  40. Fung, A. K. & Eom, H. J. Coherent scattering of a spherical wave from an irregular surface. IEEE Trans. Antennas Propag. 31, 68–72 (1983).

    Article  ADS  Google Scholar 

  41. Picardi, G., Seu, R., Coradini, A., Zampolini, E. & Ciaffone, A. The radar system for the exploration of Titan. Il Nuovo Cimento C 15, 1149–1161 (1992).

    Article  ADS  Google Scholar 

Download references


M.M. and R.S. acknowledge support from Italian Space Agency (ASI) grant 2014-041-R.0.; M.M., A.G.H. and V.P. acknowledge support from NASA CDAP grant NNX15AH10G; J.I.L. is grateful for the ministrations of the Cassini mission in supporting his research. R.L. acknowledges the support of NASA OPR Grant NNX13AK97G. We appreciate the efforts of the Cassini TOST (Titan Orbiter Science Team) and RADAR Team in planning and executing these observations.

Author information

Authors and Affiliations



M.M. led the data analysis, conceived the main conceptual ideas and wrote the manuscript. V.P. made a significant contribution to the analysis and interpretation of data, performed some of the numerical calculations, contributed to the writing of the manuscript and prepared figures. J.I.L. participated in the calculations of the lake compositions and co-wrote the interpretation in terms of geological mechanisms. A.G.H. and R.L. participated in the interpretation of geological mechanism, contributed to drafting the article and revising it for intellectual content. R.S. and G.M. contributed to data analysis and interpretation and contributed to drafting the article.

Corresponding author

Correspondence to M. Mastrogiuseppe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Astronomy thanks Alice Le Gall and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–2, Supplementary Table 1

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastrogiuseppe, M., Poggiali, V., Hayes, A.G. et al. Deep and methane-rich lakes on Titan. Nat Astron 3, 535–542 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing