Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A hybrid envelope-stripping mechanism for massive stars from supernova nebular spectroscopy


The final steps of the evolution of massive stars leading to a supernova explosion, in particular the mass-loss mechanism, is an important open problem in astrophysics. Stripped-envelope supernovae (SESNe) are explosions of massive stars where a large amount of the outer envelope has been stripped away before the explosion: types IIb, Ib and Ic in order of increasing degree of envelope stripping1,2,3. In this work, an analysis of late-time nebular spectra of SESNe is presented. The results show that the progenitors of SNe IIb and Ib are indistinguishable except for the residual amount of the H-rich envelope. The progenitors of SNe Ic are distinctly different in the nature of the carbon–oxygen (C+O) core, which is interpreted to be more massive than in SNe IIb and Ib. These findings strongly suggest that different mechanisms are responsible for the removal of the outer H-rich envelope and the deeper He-rich layer.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The average spectra of different SESN subtypes obtained around 200 days after maximum light.
Fig. 2: The correlation between early light curve width and the [O i]/[Ca ii] ratio.
Fig. 3: The distribution of LN/LO ([N ii]/[O i]) and LO/LCa ([O i]/[Ca ii]) among different SN subtypes.

Data availability

Most of the light curves and spectra are available from WiseRep, The Open Supernova Catalogue and Supernova Database of Berkeley. The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Filippenko, A. V. Optical spectra of supernovae. Annu. Rev. Astron. Astrophys. 35, 309–355 (1997).

    ADS  Article  Google Scholar 

  2. 2.

    Gal-Yam, A. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 195 (Springer International Publishing AG, Cham, Switzerland, 2017).

  3. 3.

    Nomoto, K. I., Iwamoto, K. & Suzuki, T. The evolution and explosion of massive binary stars and Type Ib-Ic-IIb-IIL supernovae. Phys. Rep. 256, 173–191 (1995).

    ADS  Article  Google Scholar 

  4. 4.

    Heger, A., Fryer, C. L., Woosley, S. E., Langer, N. & Hartmann, D. H. How massive single stars end their life. Astrophys. J. 591, 288–300 (2003).

    ADS  Article  Google Scholar 

  5. 5.

    Ouchi, R. & Maeda, K. Radii and mass-loss rates of Type IIb supernova progenitors. Astrophys. J. 840, 90 (2017).

    ADS  Article  Google Scholar 

  6. 6.

    Yoon, S.-C. Towards a better understanding of the evolution of Wolf–Rayet stars and Type Ib/Ic supernova progenitors. Mon. Not. R. Astron. Soc. 470, 3970–3980 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Chevalier, R. A. & Soderberg, A. M. Type IIb supernovae with compact and extended progenitors. Astrophys. J. Lett. 711, L40–L43 (2010).

    ADS  Article  Google Scholar 

  8. 8.

    Iwamoto, K. et al. A hypernova model for the supernova associated with the γ ray burst of 25 April 1998. Nature 395, 672–674 (1998).

    ADS  Article  Google Scholar 

  9. 9.

    Groh, J. H., Georgy, C. & Ekström, S. Progenitors of supernova Ibc: a single Wolf-Rayet star as the possible progenitor of the SN Ib iPTF13bvn. Astron. Astrophys. 558, L1 (2013).

    ADS  Article  Google Scholar 

  10. 10.

    Smith, N. Mass loss: its effect on the evolution and fate of high-mass stars. Annu. Rev. Astron. Astrophys. 52, 487–528 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Yoon, S.-C. Evolutionary models for Type Ib/c supernova progenitors. Publ. Astron. Soc. Aust. 32, e015 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    Eldridge, J. J., Fraser, M., Smartt, S. J., Maund, J. R. & Crockett, R. M. The death of massive stars—II. Observational constraints on the progenitors of Type Ibc supernovae. Mon. Not. R. Astron. Soc. 436, 774–795 (2013).

    ADS  Article  Google Scholar 

  13. 13.

    Liu, Y.-Q., Modjaz, M., Bianco, F. B. & Graur, O. Analyzing the largest spectroscopic data set of stripped supernovae to improve their identifications and constrain their progenitors. Astrophys. J. 827, 90 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Lyman, J. D. et al. Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae. Mon. Not. R. Astron. Soc. 457, 328–350 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    Taddia, F. et al. The Carnegie Supernova Project I. Analysis of stripped-envelope supernova light curves. Astron. Astrophys. 609, A136 (2018).

    Article  Google Scholar 

  16. 16.

    Anderson, J. P., Habergham, S. M., James, P. A. & Hamuy, M. Progenitor mass constraints for core-collapse supernovae from correlations with host galaxy star formation. Mon. Not. R. Astron. Soc. 424, 1372–1391 (2012).

    ADS  Article  Google Scholar 

  17. 17.

    Kuncarayakti, H. et al. Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy. Astron. Astrophys. 613, A35 (2018).

    Article  Google Scholar 

  18. 18.

    Fremling, C. et al. Oxygen and helium in stripped envelope supernovae. Astron. Astrophys. 618, A37 (2018).

    Article  Google Scholar 

  19. 19.

    Jerkstrand, A. et al. The progenitor mass of the Type IIP supernova SN 2004et from late-time spectral modeling. Astron. Astrophys. 546, A28 (2012).

    Article  Google Scholar 

  20. 20.

    Kuncarayakti, H. et al. Nebular phase observations of the Type-Ib supernova iPTF13bvn favour a binary progenitor. Astron. Astrophys. 579, A95 (2015).

    Article  Google Scholar 

  21. 21.

    Maeda, K. et al. SN 2006aj associated with XRF 060218 at late phases: nucleosynthesis signature of a neutron star-driven explosion. Astrophys. J. 658, L5–L8 (2007).

    ADS  Article  Google Scholar 

  22. 22.

    Jerkstrand, A. et al. Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh. Astron. Astrophys. 573, A12 (2015).

    Article  Google Scholar 

  23. 23.

    Fang, Q. & Maeda, K. The origin of the Hα-like structure in nebular spectra of Type IIb supernovae. Astrophys. J. 864, 47 (2018).

    ADS  Article  Google Scholar 

  24. 24.

    Dessart, L., Hillier, D. J., Li, C. & Woosley, S. On the nature of supernovae Ib and Ic. Mon. Not. R. Astron. Soc. 424, 2139–2159 (2012).

    ADS  Article  Google Scholar 

  25. 25.

    Yoon, S.-C., Chun, W., Tolstov, A., Blinnikov, S., & Dessart, L. Type Ib/Ic supernovae: effect of nickel mixing on the early-time color evolution and implications for the progenitors. Preprint at (2018).

  26. 26.

    Smartt, S. J. Progenitors of core-collapse supernovae. Annu. Rev. Astron. Astrophys. 47, 63–106 (2009).

    ADS  Article  Google Scholar 

  27. 27.

    Vanbeveren, D., De Loore, C. & Van Rensbergen, W. Massive stars. Astron. Astrophys. Rev. 9, 63–152 (1998).

    ADS  Article  Google Scholar 

  28. 28.

    Yoon, S.-C., Dessart, L. & Clocchiatti, A. Type Ib and IIb supernova progenitors in interacting binary systems. Astrophys. J. 840, 10 (2017).

    ADS  Article  Google Scholar 

  29. 29.

    Pastorello, A. et al. A giant outburst two years before the core-collapse of a massive star. Nature 447, 829–832 (2007).

    ADS  Article  Google Scholar 

  30. 30.

    Smith, N., Mauerhan, J. C. & Prieto, J. L. SN 2009ip and SN 2010mc: core-collapse Type IIn supernovae arising from blue supergiants. Mon. Not. R. Astron. Soc. 438, 1191–1207 (2014).

    ADS  Article  Google Scholar 

  31. 31.

    Yaron., O. & Gal-Yam, A. WISeREP—an interactive supernova data repository. Publ. Astron. Soc. Pac. 124, 668–681 (2012).

    ADS  Article  Google Scholar 

  32. 32.

    Guillochon, J., Parrent, J., Kelley, L. Z. & Margutti, R. An open catalog for supernova data. Astrophys. J. 835, 64 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Shivvers, I. et al. The Berkeley sample of stripped-envelope supernovae. Mon. Not. R. Astron. Soc. 482, 1545–1556 (2019).

    ADS  Article  Google Scholar 

  34. 34.

    Tauris, T. M., Langer, N. & Podsiadlowski, P. Ultra-stripped supernovae: progenitors and fate. Mon. Not. R. Astron. Soc. 451, 2123–2144 (2015).

    ADS  Article  Google Scholar 

  35. 35.

    Jerkstrand, A. et al. Long-duration superluminous supernovae at late times. Astrophys. J. 835, 13 (2017).

    ADS  Article  Google Scholar 

  36. 36.

    Arnett, W. D. Type I supernovae. I. Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982).

    ADS  Article  Google Scholar 

  37. 37.

    Valenti, S. et al. The broad-lined Type Ic supernova 2003jd. Mon. Not. R. Astron. Soc. 383, 1485–1500 (2008).

    ADS  Article  Google Scholar 

  38. 38.

    Makarov, D., Prugniel, P., Terekhova, N., Courtois, H. & Vauglin, I. HyperLEDA. III. The catalogue of extragalactic distances. Astron. Astrophys. 570, A13 (2014).

    ADS  Article  Google Scholar 

  39. 39.

    Turatto, M., Benetti, S. & Cappellaro, E. in From Twilight to Highlight: The Physics of Supernovae (eds Hillebrandt, W. & Leibundgut, B.) 200–209 (Springer-Verlag, Berlin Heidelberg, 2003).

  40. 40.

    Drout, M. R. et al. The first systematic study of Type Ibc supernova multi-band light curves. Astrophys. J. 741, 97 (2011).

    ADS  Article  Google Scholar 

  41. 41.

    Jerkstrand, A. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 795 (Springer International Publishing AG, Cham, Switzerland, 2017).

  42. 42.

    Elmhamdi, A. et al. SN Ib 1990I: clumping and dust in the ejecta? Astron. Astrophys. 426, 963–977 (2004).

    ADS  Article  Google Scholar 

  43. 43.

    Fransson, C. & Chevalier, R. A. Late emission from supernovae—a window on stellar nucleosynthesis. Astrophys. J. 343, 323–342 (1989).

    ADS  Article  Google Scholar 

  44. 44.

    Jerkstrand, A. et al. The nebular spectra of SN 2012aw and constraints on stellar nucleosynthesis from oxygen emission lines. Mon. Not. R. Astron. Soc. 439, 3694–3703 (2014).

    ADS  Article  Google Scholar 

  45. 45.

    Anderson, J. P. et al. The lowest-metallicity type II supernova from the highest-mass red supergiant progenitor. Nat. Astron. 2, 574–579 (2018).

    ADS  Article  Google Scholar 

  46. 46.

    O’Connor, E. & Ott, C. D. Black hole formation in failing core-collapse supernovae. Astrophys. J. 730, 70 (2011).

    ADS  Article  Google Scholar 

  47. 47.

    Suwa, Y., Tominaga, N. & Maeda, K. Importance of 56Ni production on diagnosing explosion mechanism of core-collapse supernova. Mon. Not. R. Astron. Soc. 483, 3607–3617 (2019).

    ADS  Article  Google Scholar 

  48. 48.

    Ennis, J. A. et al. Spitzer IRAC images and sample spectra of Cassiopeia A’s explosion. Astrophys. J. 652, 376–386 (2006).

    ADS  Article  Google Scholar 

Download references


Q.F. acknowledges support by MEXT scholarship awarded by Ministry of Education, Culture, Sports, Science and Technology, Japan. K.M. acknowledges support by JSPS KAKENHI Grant (18H04585, 18H05223, 17H02864). A.G.-Y. is supported by the EU via ERC grant number 725161, the ISF, the BSF Transformative program and by a Kimmel award. We thank A. Morales-Garoffolo for kindly providing the nebular spectra of SN 2013df. We thank WiseRep, the Open Supernova Catalog and the Berkeley Supernova Database for access to supernova data.

Author information




Q.F. led the nebular spectral analysis and the manuscript preparatoin. K.M. contributed to the initiation of the project together with Q.F. K.M. and A.G.-Y. organized the efforts for interpretation of the results and assisted in manuscript preparation. H.K. contributed to the spectral analysis and interpretations. F.S. assisted in the spectral analysis. All authors contributed to discussion.

Corresponding authors

Correspondence to Qiliang Fang or Keiichi Maeda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Journal peer review information: Nature Astronomy thanks Mattias Ergon and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4, Supplementary Tables 1–6, Supplementary references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fang, Q., Maeda, K., Kuncarayakti, H. et al. A hybrid envelope-stripping mechanism for massive stars from supernova nebular spectroscopy. Nat Astron 3, 434–439 (2019).

Download citation


Quick links