Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reduction of the maximum mass-loss rate of OH/IR stars due to unnoticed binary interaction

An Author Correction to this article was published on 19 March 2019

This article has been updated

Abstract

In 1981, the idea of a superwind that ends the life of cool giant stars was proposed1. Extreme oxygen-rich giants, OH/IR stars, develop superwinds with the highest mass-loss rates known so far, up to a few 10−4 solar masses (M) per year2,3,4,5,6,7,8,9,10,11,12, informing our understanding of the maximum mass-loss rate achieved during the asymptotic giant branch (AGB) phase. A conundrum arises whereby the observationally determined duration of the superwind phase is too short for these stars to lose enough mass to become white dwarfs2,3,4,6,8,9,10. Here we report on the detection of spiral structures around two cornerstone extreme OH/IR stars, OH 26.5 + 0.6 and OH 30.1 − 0.7, thereby identifying them as wide binary systems. Hydrodynamic simulations show that the companion’s gravitational attraction creates an equatorial density enhancement mimicking a short, extreme superwind phase, thereby solving the decades-old conundrum. This discovery restricts the maximum mass-loss rate of AGB stars to around the single-scattering radiation pressure limit of a few 10−5M yr−1. This has crucial implications for nucleosynthetic yields, planet survival and the wind-driving mechanism.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: ALMA 12CO J = 2–1 channel map of OH 26.5 + 0.6.
Fig. 2: ALMA 12CO J = 3–2 channel map of OH 30.1 − 0.7.
Fig. 3: Position–velocity diagrams of the 12CO J = 3–2 emission in OH 26.5 + 0.6 and 12CO J = 2–1 emission in OH 30.1 − 0.7.
Fig. 4: Sketch of the OH 26.5 + 0.6 binary system.

Code availability

Figures 1–3, and Supplementary Figs. 1 and 2 were made using CASA35. Supplementary Fig. 3 was made using a simple Python script that can be distributed upon request. Supplementary Fig. 4 is based on ballistic trajectory calculations by one of the authors46 solving the equation of motion using a classical fourth-order Runge–Kutta scheme. The code is available for collaboration with I.E.M. upon reasonable request.

Data availability

The ALMA data from proposals 2015.1.00054.S, 2016.1.00005.S and 2016.2.00088.S can be retrieved from the ALMA data archive at http://almascience.eso.org/aq/. The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Change history

  • 19 March 2019

    In the version of this Letter originally published, the caption of Fig. 2 incorrectly said J = 3–2; it should have said J = 2–1. This has now been corrected.

References

  1. 1.

    Renzini, A. in Physical Processes in Red Giants (eds Iben, I. Jr & Renzini, A.) Astrophysics and Space Science Library Series, Vol. 88, 431–446 (D. Reidel Publishing, Dordrecht, 1981).

  2. 2.

    Heske, A., Forveille, T., Omont, A., van der Veen, W. E. C. J. & Habing, H. J. Deficiency of CO emission from massive envelopes around cool OH/IR stars. Astron. Astrophys. 239, 173–185 (1990).

    ADS  Google Scholar 

  3. 3.

    Delfosse, X., Kahane, C. & Forveille, T. Superwind in evolved OH/IR stars. Astron. Astrophys. 320, 249–256 (1997).

    ADS  Google Scholar 

  4. 4.

    Chesneau, O. et al. The mid-IR spatially resolved environment of OH 26.5 + 0.6 at maximum luminosity. Astron. Astrophys. 435, 563–574 (2005).

    ADS  Article  Google Scholar 

  5. 5.

    van Loon, J. T., Cioni, M.-R. L., Zijlstra, A. A. & Loup, C. An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich asymptotic giant branch stars. Astron. Astrophys. 438, 273–289 (2005).

    ADS  Article  Google Scholar 

  6. 6.

    Justtanont, K., Olofsson, G., Dijkstra, C. & Meyer, A. W. Near-infrared observations of water-ice in OH/IR stars. Astron. Astrophys. 450, 1051–1059 (2006).

    ADS  Article  Google Scholar 

  7. 7.

    Groenewegen, M. A. T., Sloan, G. C., Soszyński, I. & Petersen, E. A. Luminosities and mass-loss rates of SMC and LMC AGB stars and red supergiants. Astron. Astrophys. 506, 1277–1296 (2009).

    ADS  Article  Google Scholar 

  8. 8.

    Groenewegen, M. A. T. An extension of the DUSTY radiative transfer code and an application to OH 26.5 and TT Cygni. Astron. Astrophys. 543, A36 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    Justtanont, K. et al. OH/IR stars and their superwinds as observed by the Herschel Space Observatory. Astron. Astrophys. 556, A101 (2013).

    Article  Google Scholar 

  10. 10.

    de Vries, B. L. et al. The problematically short superwind of OH/IR stars. Probing the outflow with the 69 μm spectral band of forsterite. Astron. Astrophys. 561, A75 (2014).

    Article  Google Scholar 

  11. 11.

    Goldman, S. R. et al. The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity. Mon. Not. R. Astron. Soc. 465, 403–433 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    McDonald, I., De Beck, E., Zijlstra, A. A. & Lagadec, E. Pulsation-triggered dust production by asymptotic giant branch stars. Mon. Not. R. Astron. Soc. 481, 4984–4999 (2018).

    ADS  Article  Google Scholar 

  13. 13.

    Höfner, S. & Olofsson, H. Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements. Astron. Astrophys. Rev. 26, 1 (2018).

    ADS  Article  Google Scholar 

  14. 14.

    Reimers, D. Circumstellar absorption lines and mass loss from red giants. Mem. Soc. R. Sci. Liege 8, 369–382 (1975).

    ADS  Google Scholar 

  15. 15.

    Knapp, G. R. & Morris, M. Mass loss from evolved stars. III. Mass loss rates for fifty stars from CO J = 1–0 observations. Astrophys. J. 292, 640–669 (1985).

    ADS  Article  Google Scholar 

  16. 16.

    Bedijn, P. J. Dust shells around Miras and OH/IR stars—interpretation of IRAS and other infrared measurements. Astron. Astrophys. 186, 136–152 (1987).

    ADS  Google Scholar 

  17. 17.

    Wood, P. R. et al. OH/IR stars in the Magellanic Clouds. Astrophys. J. 397, 552–569 (1992).

    ADS  Article  Google Scholar 

  18. 18.

    Catalán, S., Isern, J., García-Berro, E. & Ribas, I. The initial–final mass relationship of white dwarfs revisited: effect on the luminosity function and mass distribution. Mon. Not. R. Astron. Soc. 387, 1693–1706 (2008).

    ADS  Article  Google Scholar 

  19. 19.

    Kim, H. & Taam, R. E. Wide binary effects on asymmetries in asymptotic giant branch circumstellar envelopes. Astrophys. J. 759, 59 (2012).

    ADS  Article  Google Scholar 

  20. 20.

    Homan, W. et al. Simplified models of stellar wind anatomy for interpreting high-resolution data. Analytical approach to embedded spiral geometries. Astron. Astrophys. 579, A118 (2015).

    Article  Google Scholar 

  21. 21.

    Mastrodemos, N. & Morris, M. Bipolar pre-planetary nebulae: hydrodynamics of dusty winds in binary systems. II. Morphology of the circumstellar envelopes. Astrophys. J. 523, 357–380 (1999).

    ADS  Article  Google Scholar 

  22. 22.

    Raghavan, D. et al. A survey of stellar families: multiplicity of solar-type stars. Astrophys. J. Suppl. Ser. 190, 1–42 (2010).

    ADS  Article  Google Scholar 

  23. 23.

    Duchêne, G. & Kraus, A. Stellar multiplicity. Ann. Rev. Astron. Astrophys. 51, 269–310 (2013).

    ADS  Article  Google Scholar 

  24. 24.

    Molster, F. J. et al. Low-temperature crystallization of silicate dust in circumstellar disks. Nature 401, 563–565 (1999).

    ADS  Article  Google Scholar 

  25. 25.

    Edgar, R. G., Nordhaus, J., Blackman, E. G. & Frank, A. The formation of crystalline dust in AGB winds from binary-induced spiral shocks. Astrophys. J. Lett. 675, L101–L104 (2008).

    ADS  Article  Google Scholar 

  26. 26.

    van Loon, J. T. et al. Mass-loss rates and luminosity functions of dust-enshrouded AGB stars and red supergiants in the LMC. Astron. Astrophys. 351, 559–572 (1999).

    ADS  Google Scholar 

  27. 27.

    Bladh, S., Höfner, S., Aringer, B. & Eriksson, K. Exploring wind-driving dust species in cool luminous giants. III. Wind models for M-type AGB stars: dynamic and photometric properties. Astron. Astrophys. 575, A105 (2015).

    ADS  Article  Google Scholar 

  28. 28.

    Schröder, K.-P., Winters, J. M. & Sedlmayr, E. Tip-AGB stellar evolution in the presence of a pulsating, dust-induced ‘superwind’. Astron. Astrophys. 349, 898–906 (1999).

    ADS  Google Scholar 

  29. 29.

    Karakas, A. I. et al. Heavy-element yields and abundances of asymptotic giant branch models with a Small Magellanic Cloud metallicity. Mon. Not. R. Astron. Soc. 477, 421–437 (2018).

    ADS  Article  Google Scholar 

  30. 30.

    Abate, C., Stancliffe, R. J. & Liu, Z.-W. How plausible are the proposed formation scenarios of CEMP-r/s stars? Astron. Astrophys. 587, A50 (2016).

    ADS  Article  Google Scholar 

  31. 31.

    Villaver, E. & Livio, M. Can planets survive stellar evolution? Astrophys. J. 661, 1192–1201 (2007).

    ADS  Article  Google Scholar 

  32. 32.

    Szyszka, C., Zijlstra, A. A. & Walsh, J. R. The expansion proper motions of the planetary nebula NGC 6302 from Hubble Space Telescope imaging. Mon. Not. R. Astron. Soc. 416, 715–726 (2011).

    ADS  Google Scholar 

  33. 33.

    Karakas, A. I. Helium enrichment and carbon-star production in metal-rich populations. Mon. Not. R. Astron. Soc. 445, 347–358 (2014).

    ADS  Article  Google Scholar 

  34. 34.

    Ortiz, R. & Maciel, W. J. AGB stars: densities and formation rates obtained from OH/IR stars. Astron. Astrophys. 313, 180–190 (1996).

    ADS  Google Scholar 

  35. 35.

    McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. in Astronomical Data Analysis Software and Systems XVI (eds Shaw, R. A. et al.) ASP Conference Series, Vol. 376, 127–130 (Astronomical Society of the Pacific, 2007).

  36. 36.

    Kim, H., Hsieh, I.-T., Liu, S.-Y. & Taam, R. E. Evidence of a binary-induced spiral from an incomplete ring pattern of CIT 6. Astrophys. J. 776, 86 (2013).

    ADS  Article  Google Scholar 

  37. 37.

    Maercker, M. et al. Unexpectedly large mass loss during the thermal pulse cycle of the red giant star R Sculptoris. Nature 490, 232–234 (2012).

    ADS  Article  Google Scholar 

  38. 38.

    Decin, L. et al. ALMA data suggest the presence of spiral structure in the inner wind of CW Leonis. Astron. Astrophys. 574, A5 (2015).

    Article  Google Scholar 

  39. 39.

    Kim, H. et al. The large-scale nebular pattern of a superwind binary in an eccentric orbit. Nat. Astron. 1, 0060 (2017).

    ADS  Article  Google Scholar 

  40. 40.

    Kim, H. & Taam, R. E. A new method of determining the characteristics of evolved binary systems revealed in the observed circumstellar patterns: application to AFGL 3068. Astrophys. J. Lett. 759, L22 (2012).

    ADS  Article  Google Scholar 

  41. 41.

    Mauron, N. & Huggins, P. J. Imaging the circumstellar envelopes of AGB stars. Astron. Astrophys. 452, 257–268 (2006).

    ADS  Article  Google Scholar 

  42. 42.

    Dinh-V.-Trung & Lim, J. Tracing the asymmetry in the envelope around the carbon star CIT 6. Astrophys. J. 701, 292–297 (2009).

    ADS  Article  Google Scholar 

  43. 43.

    Justtanont, K. et al. Herschel observations of extreme OH/IR stars. The isotopic ratios of oxygen as a sign-post for the stellar mass. Astron. Astrophys. 578, A115 (2015).

    Article  Google Scholar 

  44. 44.

    De Beck, E. et al. Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: derivation of mass-loss rate formulae. Astron. Astrophys. 523, A18 (2010).

    Article  Google Scholar 

  45. 45.

    Moe, M. & Di Stefano, R. Mind your Ps and Qs: the interrelation between period (P) and mass-ratio (Q) distributions of binary stars. Astrophys. J. Suppl. Ser. 230, 15 (2017).

    ADS  Article  Google Scholar 

  46. 46.

    El Mellah, I. & Casse, F. A numerical investigation of wind accretion in persistent supergiant X-ray binaries. I. Structure of the flow at the orbital scale. Mon. Not. R. Astron. Soc. 467, 2585–2593 (2017).

    ADS  Google Scholar 

  47. 47.

    Lamers, H. J. G. L. M. & Cassinelli, J. P. Introduction to Stellar Winds (Cambridge Univ. Press, Cambridge, 1999).

  48. 48.

    El Mellah, I., Sander, A. A. C., Sundqvist, J. O. & Keppens, R. Formation of wind-captured discs in supergiant X-ray binaries: consequences for Vela X-1 and Cygnus X-1. Preprint at https://arxiv.org/abs/1810.12933 (2018).

  49. 49.

    Liu, Z.-W., Stancliffe, R. J., Abate, C. & Matrozis, E. Three-dimensional hydrodynamical simulations of mass transfer in binary systems by a free wind. Astrophys. J. 846, 117 (2017).

    ADS  Article  Google Scholar 

  50. 50.

    Chen, Z., Frank, A., Blackman, E. G., Nordhaus, J. & Carroll-Nellenback, J. Mass transfer and disc formation in AGB binary systems. Mon. Not. R. Astron. Soc. 468, 4465–4477 (2017).

    ADS  Article  Google Scholar 

  51. 51.

    Bowers, P. F. & Johnston, K. J. Sensitive VLA observations of OH 127.8 − 0.0 and OH 26.5 + 0.6. Astrophys. J. 354, 676–686 (1990).

    ADS  Article  Google Scholar 

  52. 52.

    Etoka, S. & Diamond, P. J. Insight into the OH polarimetric structure of OH26.5 + 0.6. Mon. Not. R. Astron. Soc. 406, 2218–2234 (2010).

    ADS  Article  Google Scholar 

  53. 53.

    Hallenbeck, S. L., Nuth, J. A. III & Nelson, R. N. Evolving optical properties of annealing silicate grains: from amorphous condensate to crystalline mineral. Astrophys. J. 535, 247–255 (2000).

    ADS  Article  Google Scholar 

  54. 54.

    Baud, B. & Habing, H. J. The maser strength of OH/IR stars, evolution of mass loss and the creation of a superwind. Astron. Astrophys. 127, 73–83 (1983).

    ADS  Google Scholar 

  55. 55.

    van der Veen, W. E. C. J. & Rugers, M. A comparison between CO-, OH-, and IR-mass-loss rates of evolved stars. Astron. Astrophys. 226, 183–202 (1989).

    ADS  Google Scholar 

  56. 56.

    Marshall, J. R. et al. Asymptotic giant branch superwind speed at low metallicity. Mon. Not. R. Astron. Soc. 355, 1348–1360 (2004).

    ADS  Article  Google Scholar 

  57. 57.

    Justtanont, K., Skinner, C. J., Tielens, A. G. G. M., Meixner, M. & Baas, F. Modeling of the dust and gas outflows from OH 26.5 + 0.6: the superwind. Astrophys. J. 456, 337–349 (1996).

    ADS  Article  Google Scholar 

  58. 58.

    Fong, D., Justtanont, K., Meixner, M. & Campbell, M. T. Imaging the circumstellar envelope of OH 26.5 + 0.6. Astron. Astrophys. 396, 581–587 (2002).

    ADS  Article  Google Scholar 

  59. 59.

    Ramstedt, S., Schöier, F. L., Olofsson, H. & Lundgren, A. A. On the reliability of mass-loss-rate estimates for AGB stars. Astron. Astrophys. 487, 645–657 (2008).

    ADS  Article  Google Scholar 

  60. 60.

    Decin, L. et al. Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. I. Theoretical model—mass-loss history unravelled in VY CMa. Astron. Astrophys. 456, 549–563 (2006).

    ADS  Article  Google Scholar 

  61. 61.

    Karakas, A. I. Updated stellar yields from asymptotic giant branch models. Mon. Not. R. Astron. Soc. 403, 1413–1425 (2010).

    ADS  Article  Google Scholar 

  62. 62.

    Cristallo, S., Straniero, O., Piersanti, L. & Gobrecht, D. Evolution, nucleosynthesis, and yields of AGB stars at different metallicities. III. Intermediate-mass models, revised low-mass models, and the ph-FRUITY interface. Astrophys. J. Suppl. Ser. 219, 40 (2015).

    ADS  Article  Google Scholar 

  63. 63.

    Vassiliadis, E. & Wood, P. R. Evolution of low- and intermediate-mass stars to the end of the asymptotic giant branch with mass loss. Astrophys. J. 413, 641–657 (1993).

    ADS  Article  Google Scholar 

  64. 64.

    Decin, L., Richards, A. M. S., Danilovich, T., Homan, W. & Nuth, J. A. ALMA spectral line and imaging survey of a low and a high mass-loss rate AGB star between 335 and 362 GHz. Astron. Astrophys. 615, A28 (2018).

    ADS  Article  Google Scholar 

  65. 65.

    Justtanont, K. et al. Mass loss from an extreme OH/IR star: OH 26.5+0.6. Mem. Soc. Astron. Ital. 88, 342 (2017).

    ADS  Google Scholar 

Download references

Acknowledgements

This paper uses the ALMA data ADS/JAO.ALMA2015.1.00054.S, 2016.1.00005.S and 2016.2.00088.S. ALMA is a partnership of ESO (representing its member states), NSF (United States) and NINS (Japan), together with NRC (Canada) and NSC and ASIAA (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. This paper makes use of the CASA data reduction package: https://casa.nrao.edu. CASA is developed by an international consortium of scientists based at the National Radio Astronomical Observatory (NRAO), the European Southern Observatory (ESO), the National Astronomical Observatory of Japan (NAOJ), the CSIRO Australia Telescope National Facility (CSIRO/ATNF) and the Netherlands Institute for Radio Astronomy (ASTRON) under the guidance of NRAO. L.D., T.D., W.H. and M.V.d.S. acknowledge support from the ERC consolidator grant 646758 AEROSOL. T.D. acknowledges support from the Fund of Scientific Research Flanders (FWO). D.A.G.-H. acknowledges support provided by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant AYA-2017-88254-P. We acknowledge the help of C. Gottlieb (Harvard University) for his editorial advice on the manuscript.

Author information

Affiliations

Authors

Contributions

L.D. identified the spiral structure in the ALMA data of OH 26.5 + 0.6 and OH 30.1 − 0.7, performed the full analysis and led the consortium, W.H., T.D. and A.d.K. contributed to the interpretation of the data, D.E., D.A.G.-H. and S.M. proposed the ALMA observations (ALMA proposals 2015.1.00054.S, 2016.1.00005.S and 2016.2.00088.S), S.M. reduced the ALMA data, D.E. did the sample analysis of the extreme OH/IR stars, G.M. gave advice on statistical matters, I.E.M. ran the ballistic simulations, C.G. made Fig. 4 and all authors contributed to the discussion.

Corresponding author

Correspondence to L. Decin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Supplementary references, Supplementary Figures 1–4, Supplementary Video 1 caption, Supplementary Video 2 caption.

Supplementary Video 1

Animated 12CO J = 3–2 channel map of star OH 26.5 + 0.6.

Supplementary Video 2

Animated 12CO J = 2–1 channel map of star OH 30.1-0.7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Decin, L., Homan, W., Danilovich, T. et al. Reduction of the maximum mass-loss rate of OH/IR stars due to unnoticed binary interaction. Nat Astron 3, 408–415 (2019). https://doi.org/10.1038/s41550-019-0703-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing