The Sun is an active star that can launch large eruptions of magnetized plasma into the heliosphere, known as coronal mass ejections (CMEs). These can drive shocks that accelerate particles to high energies, often resulting in radio emission at low frequencies (<200 MHz). So far, the relationship between the expansion of CMEs, shocks and particle acceleration is not well understood, partly due to the lack of radio imaging at low frequencies during the onset of shock-producing CMEs. Here, we report multi-instrument radio, white-light and ultraviolet imaging of the second largest flare in solar cycle 24 (2008–present) and its associated fast CME (3,038 ± 288 km s−1). We identify the location of a multitude of radio shock signatures, called herringbones, and find evidence for shock-accelerated electron beams at multiple locations along the expanding CME. These observations support theories of non-uniform, rippled shock fronts driven by an expanding CME in the solar corona.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The LOFAR dataset used was obtained under the project code DDT8_005 and it is available in the LOFAR Long Term Archive (LTA; The I-LOFAR data can be obtained from or on request to The AIA and LASCO datasets are both available from the Virtual Solar Observatory project ( The SUVI data were made available by NOAA’s National Centers for Environmental Information SUVI team as a community service to the solar physics community studying the September 2017 flaring events ( These datatsets are also available from the authors upon request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Krivolutsky, A. A. & Repnev, A. I. Impact of space energetic particles on the Earth’s atmosphere (a review). Geomagn. Aeronomy 52, 685 (2012).

  2. 2.

    Odert, P., Leitzinger, M., Hanslmeier, A. & Lammer, H. Stellar coronal mass ejections – I. Estimating occurrence frequencies and mass-loss rates. Mon. Not. R. Astron. Soc. 472, 876–890 (2017).

  3. 3.

    Airapetian, V. S. et al. How hospitable are space weather affected habitable zones? The role of ion escape. Astrophys. J. Lett. 836, L3 (2017).

  4. 4.

    Yurchyshyn, V., Yashiro, S., Abramenko, V., Wang, H. & Gopalswamy, N. Statistical distributions of speeds of coronal mass ejections. Astrophys. J. 619, 599 (2005).

  5. 5.

    Ruzmaikin, A., Feynman, J. & Stoev, S. A. Distribution and clustering of fast coronal mass ejections. J. Geophys. Res. 116, A04220 (2011).

  6. 6.

    Klassen, A. et al. Solar energetic electron events and coronal shocks. Astron. Astrophys. 385, 1078–1088 (2002).

  7. 7.

    Mann, G. et al. Catalogue of solar type II radio bursts observed from September 1990 to December 1993 and their statistical analysis. Astron. Astrophys. Supp. 119, 489 (1996).

  8. 8.

    Nelson, G. J. & Melrose, D. B. in Solar Radiophysics: Studies of Emission from the Sun at Metre Wavelengths (eds McLean, D. J. & Labrum, N. R.) 333–359 (Cambridge Univ. Press, Cambridge and New York, 1985).

  9. 9.

    Wild, J. P. Observations of the spectrum of high-intensity solar radiation at metre wavelengths. II. Outbursts. Aust. J. Sci. Res. Ser. A. 3, 399 (1950).

  10. 10.

    Stewart, R. T., Howard, R. A., Hansen, F., Gergely, T. & Kundu, M. Observations of coronal disturbances from 1 to 9 Rsun. II: Second event of 1973, January 11. Sol. Phys. 36, 219–231 (1974).

  11. 11.

    Smerd, S. F. Radio evidence for the propagation of magnetohydrodynamic waves along curved paths in the solar corona. Proc. Astron. Soc. Aust. 1, 305–308 (1970).

  12. 12.

    Schmidt, J. M., Cairns, I. H. & Hillan, D. S. Prediction of type II solar radio bursts by three-dimensional MHD coronal mass ejection and kinetic radio emission simulations. Astrophys. J. Lett. 773, L30 (2013).

  13. 13.

    Zucca, P. et al. Shock location and CME 3-D reconstruction of a solar type II radio burst with LOFAR. Astron. Astrophys. 615, A89 (2018).

  14. 14.

    Mann, G. & Klassen, A. Electron beams generated by shock waves in the solar corona. Astron. Astrophys. 441, 319–326 (2005).

  15. 15.

    Cairns, I. H. & Robinson, R. D. Herringbone bursts associated with type II solar radio emission. Sol. Phys. 111, 365 (1987).

  16. 16.

    Cane, H. V. & White, S. M. On the source conditions for herringbone structure in type II solar radio bursts. Sol. Phys. 120, 137 (1989).

  17. 17.

    Kundu, M. R. Solar Radio Astronomy (Interscience, New York, 1965).

  18. 18.

    Holman, G. D. & Pesses, M. E. Solar type II radio emission and the shock drift acceleration of electrons. Astrophys. J. 267, 837–843 (1983).

  19. 19.

    Zlobec, P., Messerotti, M., Karlicky, M. & Urbarz, H. Fine structures in time profiles of type II bursts at frequencies above 200 MHz. Sol. Phys. 144, 373 (1993).

  20. 20.

    Vandas, M. & Karlický, M. Electron acceleration in a wavy shock front. Astron. Astrophys. 531, A55 (2011).

  21. 21.

    Carley, E. P., Reid, H., Vilmer, N. & Gallagher, P. T. Low frequency radio observations of bi-directional electron beams in the solar corona. Astron. Astrophys. 581, A100 (2015).

  22. 22.

    Schmidt, J. M. & Cairns, I. H. Type II radio bursts: 2. Application of the new analytic formalism. J. Geophys. Res. 117, A16 (2012).

  23. 23.

    Carley, E. P. et al. Quasiperiodic acceleration of electrons by a plasmoid-driven shock in the solar atmosphere. Nat. Phys. 9, 811 (2013).

  24. 24.

    Aurass, H., Vršnak, B. & Mann, G. Shock-excited radio burst from reconnection outflow jet? Astron. Astrophys. 384, 273 (2002).

  25. 25.

    Mann, G., Warmuth, A. & Aurass, H. Generation of highly energetic electrons at reconnection outflow shocks during solar flares. Astron. Astrophys. 494, 669–675 (2009).

  26. 26.

    Lemen, J. R. et al. The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Sol. Phys. 275, 17–40 (2012).

  27. 27.

    Seaton, D. B. & Darnel, J. M. Observations of an eruptive solar flare in the extended EUV solar corona. Astrophys. J. Lett. 852, L9 (2018).

  28. 28.

    Brueckner, G. E. et al. The large angle spectroscopic coronagraph (LASCO). Sol. Phys. 162, 357–402 (1995).

  29. 29.

    Vourlidas, A., Lynch, B. J., Howard, R. A. & Li, Y. How many CMEs have flux ropes? Deciphering the signatures of shocks, flux ropes, and prominences in coronagraph observations of CMEs. Sol. Phys. 284, 179–201 (2013).

  30. 30.

    van Haarlem et al. LOFAR: the LOw-frequency ARray. Astron. Astrophys. 556, A2 (2013).

  31. 31.

    Morosan, D. E. et al. LOFAR tied-array imaging of type III solar radio bursts. Astron. Astrophys. 568, A67 (2014).

  32. 32.

    Morosan, D. E. et al. LOFAR tied-array imaging and spectroscopy of solar S bursts. Astron. Astrophys. 580, A65 (2015).

  33. 33.

    Long, D. M. et al. The kinematics of a globally propagating disturbance in the solar corona. Astrophys. J. Lett. 680, L81 (2008).

  34. 34.

    Grechnev, V. V. et al. Coronal shock waves, EUV waves, and their relation to CMEs. I. Reconciliation of EIT Waves, type II radio bursts, and leading edges of CMEs. Sol. Phys. 273, 433–460 (2011).

  35. 35.

    Zucca, P., Carley, E. P., Bloomfield, D. S. & Gallagher, P. T. The formation heights of coronal shocks from 2D density and Alfvén speed maps. Astron. Astrophys. 564, A47 (2014).

  36. 36.

    Bein, B. M. et al. Impulsive acceleration of coronal mass ejections. I. Statistics and coronal mass ejection source region characteristics. Astrophys. J. 738, 191 (2011).

  37. 37.

    Liu, Y. D. et al. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nat. Commun. 5, 3481 (2014).

  38. 38.

    Liu, W. et al. Truly global extreme ultraviolet wave from the SOL2017-09-10 X8.2+ solar flare-coronal mass ejection. Astrophys. J. Lett. 864, L24 (2018).

  39. 39.

    Bemporad, A. & Mancuso, S. Super- and sub-critical regions in shocks driven by radio-loud and radio-quiet CMEs. J. Adv. Res. 4, 287–291 (2013).

  40. 40.

    Shen, C. et al. Strength of coronal mass ejection-driven shocks near the sun and their importance in predicting solar energetic particle events. Astrophys. J. 670, 849 (2007).

  41. 41.

    Mann, G., Melnik, V. N., Rucker, H. O., Konovalenko, A. A. & Brazhenko, A. I. Radio signatures of shock-accelerated electron beams in the solar corona. Astron. Astrophys. 609, A41 (2018).

  42. 42.

    Johlander, A. et al. Rippled quasiperpendicular shock observed by the magnetospheric multiscale spacecraft. Phys. Rev. Lett. 117, 165101 (2016).

  43. 43.

    Gingell, I. et al. MMS observations and hybrid simulations of surface ripples at a marginally quasi-parallel shock. J. Geophys. Res. 122, 11003 (2017).

  44. 44.

    Lembège, B. & Savoini, P. Formation of reflected electron bursts by the nonstationarity and nonuniformity of a collisionless shock front. J. Geophys. Res. 107, 1037 (2002).

  45. 45.

    Yang, Z., Lu, Q., Liu, Y. D. & Wang, R. Impact of shock front rippling and self-reformation on the electron dynamics at low-mach-number shocks. Astrophys. J. 857, 36 (2018).

  46. 46.

    Morgan, H. & Druckmüller, M. Multi-scale gaussian normalization for solar image processing. Sol. Phys. 289, 2945–2955 (2014).

  47. 47.

    GOES-R Series Solar Ultraviolet Imager (SUVI) Level 1b Product in FITS Format (NOAA, National Centers for Environmental Information, 2018);

  48. 48.

    Newkirk, G. Jr. The solar corona in active regions and the thermal origin of the slowly varying component of solar radio radiation. Astrophys. J. 133, 983 (1961).

  49. 49.

    Stappers, B. W. et al. Observing pulsars and fast transients with LOFAR. Astron. Astrophys. 530, A80 (2011).

  50. 50.

    Schrijver, C. J. & De Rosa, M. L. Photospheric and heliospheric magnetic fields. Sol. Phys. 212, 165–200 (2003).

  51. 51.

    Gallagher, P. T., Lawrence, G. R. & Dennis, B. R. Rapid acceleration of a coronal mass ejection in the low corona and implications for propagation. Astrophys. J. Lett. 588, L53–L56 (2003).

  52. 52.

    Zhao, M.-X., Le, G.-M. & Chi, Y.-T. Investigation of the possible source for solar energetic particle event of 2017 September 10. Res. Astron. Astrophys. 18, 7 (2018).

  53. 53.

    Kontar, E. P. et al. Imaging spectroscopy of solar radio burst fine structures. Nat. Commun. 8, 1515 (2017).

  54. 54.

    Condon, J. J. Errors in elliptical gaussian FITS. Publ. Astron. Soc. Pac. 109, 166 (1997).

  55. 55.

    Komesaroff, M. M. Ionospheric refraction in radio astronomy. I. Theory. Aust. J. Phys. 13, 153 (1960).

  56. 56.

    Stewart, R. T. & McLean, D. J. Correcting low-frequency solar radio source positions for ionospheric refraction. Proc. Astron. Soc. Aust. 4, 386–389 (1982).

  57. 57.

    Reinisch, B. W. & Galkin, I. A. Global ionospheric radio observatory (GIRO). Earth Planets Space 63, 377 (2011).

Download references


This paper is based (in part) on data obtained with the International LOFAR Telescope (ILT) under project code DDT8_005. LOFAR30 is the Low Frequency Array designed and constructed by ASTRON. It has observing, data processing, and data storage facilities in several countries, which are owned by various parties (each with their own funding sources), and are collectively operated by the ILT foundation under a joint scientific policy. The ILT resources have benefited from the following recent major funding sources: CNRS-INSU, Observatoire de Paris and Université d’Orléans, France; BMBF, MIWF-NRW, MPG, Germany; Science Foundation Ireland (SFI), Department of Business, Enterprise and Innovation (DBEI), Ireland; NWO, The Netherlands; and The Science and Technology Facilities Council, UK. I-LOFAR received funding from Science Foundation Ireland (SFI) grant no. 15/RI/3204. D.E.M. received external funding from the MET Office, Exeter, UK at Trinity College Dublin. E.P.C. is supported by the H2020 INFRADEV-1-2017 LOFAR4SW project no. 777442. L.A.H. is supported by Enterprise Partnership Scheme studentship from the Irish Research Council (IRC) between Trinity College Dublin and Adnet System Inc. S.A.M. is supported by the Irish Research Council Postdoctoral Fellowship Programme and the Air Force Office of Scientific Research award number FA9550-17-1-039. E.K.J.K. and D.E.M. acknowledge The Finnish Centre of Excellence in Research of Sustainable Space, funded through the Academy of Finland grant no. 1312390 and Academy of Finland Project 1310445. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 4100103, SolMAG). The authors would like to acknowledge NOAA’s National Centers for Environmental Information SUVI team for providing data on the September 2017 flares and M. Grandin for his advice in correcting for ionospheric effects.

Author information


  1. School of Physics, Trinity College Dublin, Dublin, Ireland

    • Diana E. Morosan
    • , Eoin P. Carley
    • , Laura A. Hayes
    • , Sophie A. Murray
    • , Joe McCauley
    •  & Peter T. Gallagher
  2. Department of Physics, University of Helsinki, Helsinki, Finland

    • Diana E. Morosan
    •  & Emilia K. J. Kilpua
  3. School of Cosmic Physics, Dublin Institute for Advanced Studies, Dublin, Ireland

    • Eoin P. Carley
    • , Laura A. Hayes
    • , Sophie A. Murray
    •  & Peter T. Gallagher
  4. ASTRON, Netherlands Institute for Radio Astronomy, Dwingeloo, The Netherlands

    • Pietro Zucca
    •  & Richard A. Fallows
  5. Leibniz-Institut für Astrophysik Potsdam (AIP), Potsdam, Germany

    • Gottfried Mann
    •  & Christian Vocks


  1. Search for Diana E. Morosan in:

  2. Search for Eoin P. Carley in:

  3. Search for Laura A. Hayes in:

  4. Search for Sophie A. Murray in:

  5. Search for Pietro Zucca in:

  6. Search for Richard A. Fallows in:

  7. Search for Joe McCauley in:

  8. Search for Emilia K. J. Kilpua in:

  9. Search for Gottfried Mann in:

  10. Search for Christian Vocks in:

  11. Search for Peter T. Gallagher in:


D.E.M. performed the data analysis, interpretation of results and prepared the manuscript. E.P.C reconstructed the 3D model, contributed to the interpretation of results and manuscript preparation. L.A.H. produced the cartoon, contributed to the preparation of EUV images and interpretation of results. S.A.M. processed the EUV images and contributed to discussion of the results and manuscript preparation. P.Z. supplied the Alfvén speed maps and prepared the LOFAR core observation with the help of R.A.F. J.M. prepared and supplied the I-LOFAR observations. E.K.J.K. contributed to the interpretation of results and manuscript preparation. G.M and C.V were involved in the LOFAR observing proposal. P.T.G. is the PI of the LOFAR observing proposal and I-LOFAR project and guided the data analysis and writing of the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Diana E. Morosan.

Supplementary information

  1. Supplementary Information

    Supplementary Video 1 caption, Supplementary Figures 1–5

  2. Supplementary Video 1

About this article

Publication history