The ice composition in the disk around V883 Ori revealed by its stellar outburst

Abstract

Complex organic molecules (COMs), which are the seeds of prebiotic material and precursors of amino acids and sugars, form in the icy mantles of circumstellar dust grains1 but cannot be detected remotely unless they are heated and released to the gas phase. Around solar-mass stars, water and COMs only sublimate in the inner few au of the circumstellar disk2, making them extremely difficult to spatially resolve and study. Sudden increases in the luminosity of the central star will quickly expand the sublimation front (the so-called snow line) to larger radii, as seen previously in the FU Ori outburst of the young star V883 Ori3. Here, we take advantage of the rapid increase in disk temperature of V883 Ori to detect and analyse five different COMs—methanol, acetone, acetonitrile, acetaldehyde and methyl formate—in spatially resolved submillimetre observations. The abundances of COMs in the disk around V883 Ori are in reasonable agreement with cometary values4, suggesting that outbursting young stars can provide a special opportunity to study the ice composition of material directly related to planet formation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The COMs detected in the cycle 5 ALMA observation.
Fig. 2: Intensity weighted velocity images (colours) and integrated intensity maps (contours) of the molecular lines clearly detected in the cycle 5 ALMA observations.
Fig. 3: The high-resolution images obtained from the cycle 4 ALMA observation.
Fig. 4: Models for the 13CH3OH 1211–1212 line.

Data availability

This paper makes use of the ALMA data, which can be downloaded from the ALMA archive (https://almascience.nao.ac.jp/aq/) with project codes 2016.1.00728.S and 2017.1.01066.T. The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Herbst, E. & van Dishoeck, E. F. Complex organic interstellar molecules. Ann. Rev. Astron. Astrophys. 47, 427–480 (2009).

    ADS  Article  Google Scholar 

  2. 2.

    D’Alessio, P., Calvet, N. & Hartmann, L. Accretion disks around young objects. III. Grain growth. Astrophys. J. 553, 321–334 (2001).

    ADS  Article  Google Scholar 

  3. 3.

    Cieza, L. A. et al. Imaging the water snow-line during a protostellar outburst. Nature 535, 258–261 (2016).

    ADS  Article  Google Scholar 

  4. 4.

    Le Roy, L. et al. Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA. Astron. Astrophys. 583, A1 (2015).

    Article  Google Scholar 

  5. 5.

    Altwegg, K. et al. Organics in comet 67P—a first comparative analysis of mass spectra from ROSINA-DFMS, COSAC and Ptolemy. Mon. Not. R. Astron. Soc. 469, S130–S141 (2017).

    Article  Google Scholar 

  6. 6.

    Chyba, C. F., Thomas, P. J., Brookshaw, L. & Sagan, C. Cometary delivery of organic molecules to the early Earth. Science 249, 366–373 (1990).

    ADS  Article  Google Scholar 

  7. 7.

    Imai, M. et al. Discovery of a hot corino in the Bok globule B335. Astrophys. J. Lett. 830, L37 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Jørgensen, J. K. et al. The ALMA Protostellar Interferometric Line Survey (PILS). First results from an unbiased submillimeter wavelength line survey of the class 0 protostellar binary IRAS 16293-2422 with ALMA. Astron. Astrophys. 595, A117 (2016).

    Article  Google Scholar 

  9. 9.

    Mumma, M. J. & Charnley, S. B. The chemical composition of comets—emerging taxonomies and natal heritage. Ann. Rev. Astron. Astrophys. 49, 471–524 (2011).

    ADS  Article  Google Scholar 

  10. 10.

    Furuya, K. & Aikawa, Y. Reprocessing of ices in turbulent protoplanetary disks: carbon and nitrogen chemistry. Astrophys. J. 790, 97 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Schwarz, K. R. et al. Unlocking CO depletion in protoplanetary disks. I. The warm molecular layer. Astrophys. J. 856, 85 (2018).

    ADS  Article  Google Scholar 

  12. 12.

    Pontoppidan, K. M. et al. Ices in the edge-on disk CRBR 2422.8-3423: Spitzer spectroscopy and Monte Carlo radiative transfer modeling. Astrophys. J. 622, 463–481 (2005).

    ADS  Article  Google Scholar 

  13. 13.

    Hama, T. & Watanabe, N. Surface processes on interstellar amorphous solid water: adsorption, diffusion, tunneling reactions, and nuclear-spin conversion. Chem. Rev. 113, 8783–8839 (2013).

    Article  Google Scholar 

  14. 14.

    Walsh, C. et al. First detection of gas-phase methanol in a protoplanetary disk. Astrophys. J. Lett. 823, L10 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    Öberg, K. I. et al. The comet-like composition of a protoplanetary disk as revealed by complex cyanides. Nature 520, 198–201 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Loomis, R. A. et al. Detecting weak spectral lines in interferometric data through matched filtering. Astron. J. 155, 182 (2018).

    ADS  Article  Google Scholar 

  17. 17.

    Bergner, J. B., Guzmán, V. G., Öberg, K. I., Loomis, R. A. & Pegues, J. A survey of CH3CN and HC3N in protoplanetary disks. Astrophys. J. 857, 69 (2018).

    ADS  Article  Google Scholar 

  18. 18.

    Favre, C. et al. First detection of the simplest organic acid in a protoplanetary disk. Astrophys. J. Lett. 862, L2 (2018).

    ADS  Article  Google Scholar 

  19. 19.

    Bertin, M. et al. UV photodesorption of methanol in pure and CO-rich ices: desorption rates of the intact molecule and of the photofragments. Astrophys. J. Lett. 817, L12 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    Molyarova, T. et al. Chemical signatures of the FU Ori outbursts. Astrophys. J. 866, 46 (2018).

    ADS  Article  Google Scholar 

  21. 21.

    Audard, M. et al. in Protostars and Planets VI (eds Beuther, H. et al.) 387–410 (Univ. Arizona Press, Tucson, 2014).

  22. 22.

    Harsono, D., Bruderer, S. & van Dishoeck, E. F. Volatile snowlines in embedded disks around low-mass protostars. Astron. Astrophys. 582, A41 (2015).

    Article  Google Scholar 

  23. 23.

    Nomura, H., Aikawa, Y., Nakagawa, Y. & Millar, T. J. Effects of accretion flow on the chemical structure in the inner regions of protoplanetary disks. Astron. Astrophys. 495, 183–188 (2009).

    ADS  Article  Google Scholar 

  24. 24.

    van ’t Hoff, M. L. R. et al. Methanol and its relation to the water snowline in the disk around the young outbursting star V883 Ori. Astrophys. J. Lett. 864, L23 (2018).

    ADS  Article  Google Scholar 

  25. 25.

    Qi, C. et al. CO J = 6-5 observations of TW Hydrae with the submillimeter array. Astrophys. J. Lett. 636, L157–L160 (2006).

    ADS  Article  Google Scholar 

  26. 26.

    Dullemond, C. P., Hollenbach, D., Kamp, I. & D’Alessio, P. in Protostars and Planets V (eds Reipurth, B., Jewitt, D. & Keil, K.) 555–572 (Univ. Arizona Press, Tucson, 2007).

  27. 27.

    Schoonenberg, D., Okuzumi, S. & Ormel, C. W. What pebbles are made of: interpretation of the V883 Ori disk. Astron. Astrophys. 605, L2 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Möller, T., Endres, C. & Schilke, P. eXtended CASA Line Analysis Software Suite (XCLASS). Astron. Astrophys. 598, A7 (2017).

    ADS  Article  Google Scholar 

  29. 29.

    Lykke, J. M. et al. The ALMA-PILS survey: first detections of ethylene oxide, acetone and propanal toward the low-mass protostar IRAS 16293-2422. Astron. Astrophys. 597, A53 (2017).

    Article  Google Scholar 

  30. 30.

    Calcutt, H. et al. The ALMA-PILS survey: first detection of methyl isocyanide (CH3NC) in a solar-type protostar. Astron. Astrophys. 617, A95 (2018).

    Article  Google Scholar 

  31. 31.

    Goesmann, F. et al. Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science 349, aab0689 (2015).

    Article  Google Scholar 

  32. 32.

    McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. in Astronomical Data Analysis Software and Systems XVI Vol. 376 (eds Shaw, R. A., Hill, F. & Bell, D. J.) 127–130 (Astron. Soc. Pac., 2007).

  33. 33.

    Allen, L. E. & Davis, C. J. in Handbook of Star Forming Regions Vol. I (ed. Reipurth, B.) 621–661 (Astron. Soc. Pac., San Francisco, 2008).

  34. 34.

    Fang, M. et al. Young stellar objects in Lynds1641: disks, accretion, and star formation history. Astrophys. J. Suppl. 207, 5 (2013).

    ADS  Article  Google Scholar 

  35. 35.

    Gaia Collaboration. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

  36. 36.

    Gaia Collaboration. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

  37. 37.

    Kounkel, M. et al. The APOGEE-2 survey of the Orion star-forming complex. II. Six-dimensional structure. Astron. J. 156, 84 (2018).

    ADS  Article  Google Scholar 

  38. 38.

    Yen, H.-W. et al. Stacking spectra in protoplanetary disks: detecting intensity profiles from hidden molecular lines in HD 163296. Astrophys. J. 832, 204 (2016).

    ADS  Article  Google Scholar 

  39. 39.

    Müller, H. S. P., Thorwirth, S., Roth, D. A. & Winnewisser, G. The Cologne Database for Molecular Spectroscopy, CDMS. Astron. Astrophys. 370, L49–L52 (2001).

    ADS  Article  Google Scholar 

  40. 40.

    Müller, H. S. P., Schlöder, F., Stutzki, J. & Winnewisser, G. The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J. Mol. Struct. 742, 215–227 (2005).

    ADS  Article  Google Scholar 

  41. 41.

    Pickett, H. M. et al. Submillimeter, millimeter and microwave spectral line catalog. J. Quant. Spectrosc. Radiative Transfer 60, 883–890 (1998).

    ADS  Article  Google Scholar 

  42. 42.

    Möller, T. et al. Modeling and Analysis Generic Interface for eXternal numerical codes (MAGIX). Astron. Astrophys. 549, A21 (2013).

    Article  Google Scholar 

  43. 43.

    Langer, W. D. & Penzias, A. A. 12C/13C isotope ratio in the local interstellar medium from observations of 13C18O in molecular clouds. Astrophys. J. 408, 539–547 (1993).

    ADS  Article  Google Scholar 

  44. 44.

    Furuya, K., Aikawa, Y., Sakai, N. & Yamamoto, S. Carbon isotope and isotopomer fractionation in cold dense cloud cores. Astrophys. J. 731, 38 (2011).

    ADS  Article  Google Scholar 

  45. 45.

    Boogert, A. C. A., Blake, G. A. & Tielens, A. G. G. M. High-resolution 4.7 micron Keck/NIRSPEC spectra of protostars. II. Detection of the 13CO isotope in icy grain mantles. Astrophys. J. 577, 271–280 (2002).

    ADS  Article  Google Scholar 

  46. 46.

    Walsh, C. et al. Complex organic molecules in protoplanetary disks. Astron. Astrophys. 563, A33 (2014).

    Article  Google Scholar 

  47. 47.

    Dartois, E., Dutrey, A. & Guilloteau, S. Structure of the DM Tau outer disk: probing the vertical kinetic temperature gradient. Astron. Astrophys. 399, 773–787 (2003).

    ADS  Article  Google Scholar 

  48. 48.

    Andrews, S. M. et al. Resolved images of large cavities in protoplanetary transition disks. Astrophys. J. 732, 42 (2011).

    ADS  Article  Google Scholar 

  49. 49.

    Cieza, L. A. et al. The ALMA early science view of FUor/EXor objects—V. Continuum disc masses and sizes. Mon. Not. R. Astron. Soc. 474, 4347–4357 (2018).

    ADS  Article  Google Scholar 

  50. 50.

    D’Alessio, P., Cantö, J., Calvet, N. & Lizano, S. Accretion disks around young objects. I. The detailed vertical structure. Astrophys. J. 500, 411–427 (1998).

    ADS  Article  Google Scholar 

  51. 51.

    Lee, J.-E., Bergin, E. A. & Evans, N. J. II Evolution of chemistry and molecular line profiles during protostellar collapse. Astrophys. J. 617, 360–383 (2004).

    ADS  Article  Google Scholar 

  52. 52.

    Wakelam, V., Loison, J.-C., Mereau, R. & Ruaud, M. Binding energies: new values and impact on the efficiency of chemical desorption. Mol. Astrophys. 6, 22–35 (2017).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

ALMA is a partnership of ESO (representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), NSC and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. J.-E.L. is supported by the Basic Science Research Program through the National Research Foundation of Korea (grant no. NRF-2018R1A2B6003423) and the Korea Astronomy and Space Science Institute under the R&D programme supervised by the Ministry of Science, ICT and Future Planning. G.H. is funded by general grant 11473005 awarded by the National Science Foundation of China. D.J. is supported by the National Research Council of Canada and by an NSERC Discovery Grant. Y.A. acknowledges support from JSPS KAHENHI grant numbers 16K13782 and 18H05222.

Author information

Affiliations

Authors

Contributions

J.-E.L., S.L. and G.B. performed the detailed calculations and line fittings used in the analysis. J.-E.L. wrote the manuscript. All authors were participants in the discussion of results, determination of the conclusions and revision of the manuscript.

Corresponding author

Correspondence to Jeong-Eun Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Supplementary Figures 1–5

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Lee, S., Baek, G. et al. The ice composition in the disk around V883 Ori revealed by its stellar outburst. Nat Astron 3, 314–319 (2019). https://doi.org/10.1038/s41550-018-0680-0

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing