Collisionless shock heating of heavy ions in SN 1987A

Abstract

Astrophysical shocks at all scales, from those in the heliosphere up to cosmological shock waves, are typically ‘collisionless’, because the thickness of their jump region is much shorter than the collisional mean free path. Across these jumps, electrons, protons and ions are expected to be heated at different temperatures. Supernova remnants (SNRs) are ideal targets to study collisionless processes because of their bright post-shock emission and fast shocks, but the actual dependence of the post-shock temperature on the particle mass is still widely debated1. We tackle this longstanding issue through the analysis of deep multi-epoch and high-resolution observations, made with the Chandra X-ray telescope, of the youngest nearby supernova remnant, SN 1987A. We introduce a data analysis method by studying the observed spectra in close comparison with a dedicated full three-dimensional hydrodynamic simulation that self-consistently reproduces the broadening of the spectral lines of many ions together. We measure the post-shock temperature of protons and ions through comparison of the model with observations. Our results show that the ratio of ion temperature to proton temperature is always significantly higher than one and increases linearly with the ion mass for a wide range of masses and shock parameters.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Observed and synthetic maps and spectra of SN 1987A.
Fig. 2: Line broadening for selected ions in the X-ray spectra of SN 1987A.
Fig. 3: Modelled and measured Fe xvii line profile for 2011.
Fig. 4: Ion to proton temperature ratios measured by combining the 2007 and 2011 observations of SN 1987A for Ne, Mg, Si and Fe lines.

Data availability

The HD simulations adopted here are presented in detail in ref. 24. The Chandra dataset analysed are available in the Chandra Data Archive (http://cxc.harvard.edu/cda/). Other relevant data are available from the corresponding author upon reasonable request.

References

  1. 1.

    Ghavamian, P., Schwartz, S. J., Mitchell, J., Masters, A. & Laming, J. M. Electron–ion temperature equilibration in collisionless shocks: the supernova remnant–solar wind connection. Space Sci. Rev. 178, 633–663 (2013).

    ADS  Article  Google Scholar 

  2. 2.

    Landau, L. D. & Lifshitz, E. M. Fluid Mechanics (Pergamon, Oxford, 1959).

    Google Scholar 

  3. 3.

    Bykov, A. M., Dolag, K. & Durret, F. Cosmological shock waves. Space Sci. Rev. 134, 119–140 (2008).

    ADS  Article  Google Scholar 

  4. 4.

    Vink, J. Supernova remnants: the X-ray perspective. Astron. Astrophys. Review 20, 49 (2012).

    ADS  Article  Google Scholar 

  5. 5.

    Tsurutani, B. T. & Stone, R. G. (eds) Collisionless Shocks in the Heliosphere: Reviews of Current Research Geophysical Monograph Series, Vol. 35 (American Geophysical Union, 1985).

  6. 6.

    Chevalier, R. A. & Raymond, J. C. Optical emission from a fast shock wave—the remnants of Tycho’s supernova and SN 1006. Astrophys. J. 225, L27–L30 (1978).

    ADS  Article  Google Scholar 

  7. 7.

    Chevalier, R. A., Kirshner, R. P. & Raymond, J. C. The optical emission from a fast shock wave with application to supernova remnants. Astrophys. J. 235, 186–195 (1980).

    ADS  Article  Google Scholar 

  8. 8.

    Raymond, J. C. Shock waves in supernova ejecta. Space Sci. Rev. 214, 28 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Rakowski, C. E., Ghavamian, P. & Hughes, J. P. The physics of supernova remnant blast waves. II. Electron–ion equilibration in DEM L71 in the Large Magellanic Cloud. Astrophys. J. 590, 846–857 (2003).

    ADS  Article  Google Scholar 

  10. 10.

    van Adelsberg, M., Heng, K., McCray, R. & Raymond, J. C. Spatial structure and collisionless electron heating in balmer-dominated shocks. Astrophys. J. 689, 1089–1104 (2008).

    ADS  Article  Google Scholar 

  11. 11.

    Ghavamian, P., Laming, J. M. & Rakowski, C. E. A physical relationship between electron-proton temperature equilibration and mach number in fast collisionless shocks. Astrophys. J. 654, L69–L72 (2007).

    ADS  Article  Google Scholar 

  12. 12.

    Rakowski, C. E., Laming, J. M. & Ghavamian, P. The heating of thermal electrons in fast collisionless shocks: the integral role of cosmic rays. Astrophys. J. 684, 348–357 (2008).

    ADS  Article  Google Scholar 

  13. 13.

    Vink, J., Broersen, S., Bykov, A. & Gabici, S. On the electron–ion temperature ratio established by collisionless shocks. Astron. Astrophys. 579, A13 (2015).

    ADS  Article  Google Scholar 

  14. 14.

    Shimada, N. & Hoshino, M. Strong electron acceleration at high Mach number shock waves: simulation study of electron dynamics. Astrophys. J. 543, L67–L71 (2000).

    ADS  Article  Google Scholar 

  15. 15.

    Park, J., Caprioli, D. & Spitkovsky, A. Simultaneous acceleration of protons and electrons at nonrelativistic quasiparallel collisionless shocks. Phys. Rev. Lett. 114, 085003 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Korreck, K. E., Raymond, J. C., Zurbuchen, T. H. & Ghavamian, P. Far ultraviolet spectroscopic explorer observation of the nonradiative collisionless shock in the remnant of SN 1006. Astrophys. J. 615, 280–285 (2004).

    ADS  Article  Google Scholar 

  17. 17.

    Berdichevsky, D., Geiss, J., Gloeckler, G. & Mall, U. Excess heating of 4He2+ and O6+ relative to H+ downstream of interplanetary shocks. J. Geophys. Res. 102, 2623–2636 (1997).

  18. 18.

    Raymond, J. C., Winkler, P. F., Blair, W. P. & Laming, J. M. Ion–ion equilibration and particle distributions in a 3000 km s1 shock in SN 1006. Astrophys. J. 851, 12 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Broersen, S. et al. The northwestern ejecta knot in SN 1006. Astron. Astrophys. 552, A9 (2013).

    Article  Google Scholar 

  20. 20.

    Vink, J., Laming, J. M., Gu, M. F., Rasmussen, A. & Kaastra, J. S. The slow temperature equilibration behind the shock front of SN 1006. Astrophys. J. 587, L31–L34 (2003).

    ADS  Article  Google Scholar 

  21. 21.

    West, R. M., Lauberts, A., Schuster, H.-E. & Jorgensen, H. E. Astrometry of SN 1987A and Sanduleak-69 202. Astron. Astrophys. 177, L1–L3 (1987).

    ADS  Google Scholar 

  22. 22.

    McCray, R. Supernova 1987A revisited. Annu. Rev. Astron. Astr. 31, 175–216 (1993).

    ADS  Article  Google Scholar 

  23. 23.

    McCray, R. & Fransson, C. The remnant of supernova 1987A. Annu. Rev. Astron. Astr. 54, 19–52 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    Orlando, S., Miceli, M., Pumo, M. L. & Bocchino, F. Supernova 1987A: a template to link supernovae to their remnants. Astrophys. J. 810, 168 (2015).

    ADS  Article  Google Scholar 

  25. 25.

    Spitzer, L. Physics of Fully Ionized Gases 2nd edn (Interscience, New York, 1962).

    Google Scholar 

  26. 26.

    Frank, K. A. et al. Chandra observes the end of an era in SN 1987A. Astrophys. J. 829, 40 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Zhekov, S. A., McCray, R., Borkowski, K. J., Burrows, D. N. & Park, S. Chandra observations of shock kinematics in supernova remnant 1987A. Astrophys. J. 628, L127–L130 (2005).

    ADS  Article  Google Scholar 

  28. 28.

    Zhekov, S. A. et al. High-resolution X-ray spectroscopy of SNR 1987A: Chandra LETG and HETG observations in 2007. Astrophys. J. 692, 1190–1204 (2009).

    ADS  Article  Google Scholar 

  29. 29.

    Dewey, D., Dwarkadas, V. V., Haberl, F., Sturm, R. & Canizares, C. R. Evolution and hydrodynamics of the very broad X-ray line emission in SN 1987A. Astrophys. J. 752, 103 (2012).

    ADS  Article  Google Scholar 

  30. 30.

    Caprioli, D., Yi, D. T. & Spitkovsky, A. Chemical enhancements in shock-accelerated particles: ab initio simulations. Phys. Rev. Lett. 119, 171101 (2017).

    ADS  Article  Google Scholar 

  31. 31.

    Zanardo, G. et al. Detection of linear polarization in the radio remnant of supernova 1987A. Astrophys. J. 861, L9 (2018).

    ADS  Article  Google Scholar 

  32. 32.

    Narayan, R. & Medvedev, M. V. Thermal conduction in clusters of galaxies. Astrophys. J. 562, L129–L132 (2001).

    ADS  Article  Google Scholar 

  33. 33.

    France, K. et al. HST-COS observations of hydrogen, helium, carbon, and nitrogen emission from the SN 1987A reverse shock. Astrophys. J. 743, 186 (2011).

    ADS  Article  Google Scholar 

  34. 34.

    Orlando, S., Drake, J. J. & Laming, J. M. Three-dimensional modeling of the asymmetric blast wave from the 2006 outburst of RS Ophiuchi: early X-ray emission. Astron. Astrophys. 493, 1049–1059 (2009).

    ADS  Article  Google Scholar 

  35. 35.

    Miceli, M., Orlando, S., Reale, F., Bocchino, F. & Peres, G. Hydrodynamic modelling of ejecta shrapnel in the Vela supernova remnant. Mon. Not. R. Astron. Soc. 430, 2864–2872 (2013).

  36. 36.

    Park, S. et al. Evolutionary status of SNR 1987A at the age of eighteen. Astrophys. J. 646, 1001–1008 (2006).

    ADS  Article  Google Scholar 

  37. 37.

    Sugerman, B. E. K., Crotts, A. P. S., Kunkel, W. E., Heathcote, S. R. & Lawrence, S. S. The three-dimensional circumstellar environment of SN 1987A. Astrophys. J. Suppl. S. 159, 60–99 (2005).

    ADS  Article  Google Scholar 

  38. 38.

    Dewey, D., Zhekov, S. A., McCray, R. & Canizares, C. R. Chandra HETG spectra of SN 1987A at 20 years. Astrophys. J. 676, L131 (2008).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The software used in this work was, in part, developed by the US Department of Energy-supported Advanced Simulation and Computing/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago. We acknowledge that the results of this research have been achieved using the PRACE Research Infrastructure resource MareNostrum III based in Spain at the Barcelona Supercomputing Center (PRACE Award no. 2012060993). The scientific results reported in this article are based to a significant degree on data obtained from the Chandra Data Archive. M.M., S.O., G.P. and F.B. acknowledge financial contribution from the agreement ASI-INAF n.2017-14-H.O. O.P. acknowledges partial support from the agreement 0118U004941.

Author information

Affiliations

Authors

Contributions

M.M. composed the text on the basis of inputs from all authors. M.M. designed the analysis procedure and led the analysis of the synthetic and actual X-ray spectra. S.O. led the set-up and run of the hydrodynamics simulation and the synthesis of X-ray spectra. D.N.B., K.A.F. and C.A. supported the X-ray data analysis process. F.R., G.P., O.P. and F.B. supported the analysis of the simulation and the synthesis of observables. All authors helped to discuss the results and to comment on the manuscript.

Corresponding author

Correspondence to Marco Miceli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–5, Supplementary Tables 1–2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miceli, M., Orlando, S., Burrows, D.N. et al. Collisionless shock heating of heavy ions in SN 1987A. Nat Astron 3, 236–241 (2019). https://doi.org/10.1038/s41550-018-0677-8

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing