The next frontier for planetary and human exploration

The surface of Mars has been well mapped and characterized, yet the subsurface — the most likely place to find signs of extant or extinct life and a repository of useful resources for human exploration — remains unexplored. In the near future this is set to change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Sounding and drilling capabilities on Mars.

References

  1. 1.

    Grotzinger, J. P. & Milliken, R. E. in Sedimentary Geology of Mars 1-48 (SEPM Society for Sedimentary Geology, Tulsa, 2012).

  2. 2.

    Carr, M. H. & Head, J. W. III Earth. Planet. Sci. Lett. 294, 185–203 (2010).

    ADS  Article  Google Scholar 

  3. 3.

    Jakosky, B. M. et al. Science 355, 1408–1410 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Michalski, J. R. et al. Nat. Geosci. 11, 21–26 (2017).

    ADS  Article  Google Scholar 

  5. 5.

    Sherwood Lollar, B. et al. Nature 516, 379–382 (2014).

    Article  Google Scholar 

  6. 6.

    Boston, P. J., Ivanov, M. V. & McKay, C. P. Icarus 95, 300–308 (1992).

    ADS  Article  Google Scholar 

  7. 7.

    Clifford, S. M. et al. J. Geophys. Res. 115, E07001 (2010).

    ADS  Article  Google Scholar 

  8. 8.

    Eigenbrode, J. L. et al. Science 360, 1096–1101 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Kminek, G. & Bada, J. L. Earth. Planet. Sci. Lett. 245, 1–5 (2006).

    ADS  Article  Google Scholar 

  10. 10.

    Holland, G. et al. Nature 497, 357–360 (2013).

    ADS  Article  Google Scholar 

  11. 11.

    Orosei, R. et al. Science 361, 490–493 (2018).

    ADS  Google Scholar 

  12. 12.

    Petersen, E. I., Holt, J. W. & Levy, J. S. Geophys. Res. Lett. 45, 11595–11604 (2018).

    ADS  Article  Google Scholar 

  13. 13.

    Stillman, D. E. & Grimm, R. E. J. Geophys. Res. 116, E03001 (2011).

    ADS  Google Scholar 

  14. 14.

    Grotzinger, J. P. et al. Science 343, 1242777 (2014).

    Article  Google Scholar 

  15. 15.

    Abbey, W. et al. Icarus 319, 1–13 (2019).

    ADS  Article  Google Scholar 

  16. 16.

    Lanza, N. L. et al. Geophys. Res. Lett. 43, 7398–7407 (2016).

    ADS  Article  Google Scholar 

  17. 17.

    Kounaves, S. P. et al. Icarus 232, 226–231 (2014).

    ADS  Article  Google Scholar 

  18. 18.

    Wu, Z. et al. Earth Planet. Sci. Lett. 504, 94–105 (2018).

    ADS  Article  Google Scholar 

  19. 19.

    Webster, C. R. et al. Science 360, 1093–1096 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Stamenković, V., Ward, L. M., Mischna, M. & Fischer, W. W. Nat. Geosci. 11, 905–909 (2018).

    ADS  Article  Google Scholar 

  21. 21.

    Yung, Y. L. et al. Astrobio. 18, 1221–1242 (2018).

    ADS  Article  Google Scholar 

  22. 22.

    Stern, J. C. Proc. Natl Acad. Sci. USA 112, 4245–4250 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Boston, P. J. et al. Astrobio. 1, 25–55 (2001).

    ADS  Article  Google Scholar 

  24. 24.

    Oehler, D. Z. & Etiope, G. Astrobio. 17, 1233–1264 (2017).

    ADS  Article  Google Scholar 

  25. 25.

    Plesa, A.-C. et al. J. Geophys. Res.: Planets 121, 2386–2403 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Tarnas, J. D. et al. Earth Planet. Sci. Lett. 502, 133–145 (2018).

    ADS  Article  Google Scholar 

  27. 27.

    Banerdt, W. B. & Russell, C. T. Space Sci. Rev. 211, 1–3 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Dundas, C. M. et al. Science 359, 199–201 (2018).

    ADS  Article  Google Scholar 

  29. 29.

    Grimm, R. E. et al. Planet. Space Sci. 57, 1268–1281 (2009).

    ADS  Article  Google Scholar 

  30. 30.

    French, K. L. et al. Proc. Natl Acad. Sci. USA 112, 5915–5920 (2015).

    ADS  Article  Google Scholar 

  31. 31.

    Zacny, K. & Bar-Cohen, Y. in Mars: Prospective Energy and Material Resources (ed. Badescu, V.) 431–459 (Springer-Verlag, Berlin, 2009).

  32. 32.

    Eshelman, E. et al. Lunar Planet. Sci. Conf. 48, 2326 (2017).

    ADS  Google Scholar 

  33. 33.

    Eshelman, E. et al. Astrobiology (in the press)..

  34. 34.

    Blank, J. G. et al. in 42nd COSPAR Scientific Assembly F3.1-13-18 (COSPAR, 2018).

  35. 35.

    Dubowsky, S., Iagnemma, K. & Boston, P. J. Microbots for Large-scale Planetary Surface and Subsurface Exploration NIAC CP 02–02 (NIAC, 2004); https://go.nature.com/2RASSK9

  36. 36.

    Salas, E. C. et al. Front. Microbiol. 6, 1260 (2015).

    Article  Google Scholar 

  37. 37.

    Barba, N. et al. Mars small spacecraft studies: overview. In 2019 IEEE Aerospace Conf. (IEEE, in the press)..

  38. 38.

    National Academies of Sciences, Engineering, and Medicine An Astrobiology Strategy for the Search for Life in the Universe (The National Academies Press, Washington, DC, 2018).

    Google Scholar 

Download references

Acknowledgements

We thank the Keck Institute for Space Studies (KISS) for kick-starting this work through a KISS Workshop held 12–16 February 2018 at the California Institute of Technology, Pasadena, CA, and the Canadian Institute for Advanced Studies (CIFAR) for allowing this discussion to expand with the Earth 4D workshop. Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Stamenković.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stamenković, V., Beegle, L.W., Zacny, K. et al. The next frontier for planetary and human exploration. Nat Astron 3, 116–120 (2019). https://doi.org/10.1038/s41550-018-0676-9

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing