Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Probing supermassive black hole binaries with pulsar timing

The detection of a gravitational-wave background at nanohertz frequencies can tell us if and how supermassive black holes merge, and inform our knowledge of galaxy merger rates and supermassive black hole masses. All we have to do is time pulsars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Astrophysics manifesting in the gravitational-wave background strain spectrum.

S. Burke-Spolaor (West Virginia University)

Fig. 2: Time to detection of different models of the gravitational-wave background (GWB).

adapted from ref. 8, AAS


  1. Kormendy, J. & Ho, L. C. Ann. Rev. Astron. Astrophys. 51, 511–653 (2013).

    Article  ADS  Google Scholar 

  2. Begelman, M. C., Blandford, R. D. & Rees, M. J. Nature 287, 307–309 (1980).

    Article  ADS  Google Scholar 

  3. Milosavljevic, M. & Merritt, D. Astrophys. J. 596, 860–878 (2003).

    Article  ADS  Google Scholar 

  4. Khan, F. M., Holley-Bockelmann, K., Berczik, P. & Just, A. Astrophys. J. 773, 100–106 (2013).

    Article  ADS  Google Scholar 

  5. Sesana, A. Mon. Not. R. Astron. Soc. 433, L1–L5 (2013).

    Article  ADS  Google Scholar 

  6. Detweiler, S. Astrophys. J. 234, 1100–1104 (1979).

    Article  ADS  Google Scholar 

  7. Hellings, R. W. & Downs, G. S. Astrophys. J. Lett. 265, L39–L42 (1983).

    Article  ADS  Google Scholar 

  8. Taylor, S. R. et al. Astrophys. J. Lett. 819, L6 (2016).

    Article  ADS  Google Scholar 

  9. Phinney, E. S. Preprint at (2001).

  10. Arzoumanian, Z. et al. Astrophys. J. 821, 13 (2016).

    Article  ADS  Google Scholar 

  11. Ryu, T. et al. Mon. Not. R. Astron. Soc. 473, 3410–3433 (2018).

    Article  ADS  Google Scholar 

  12. Bonetti, M., Sesana, A., Barausse, E. & Haardt, F. Mon. Not. R. Astron. Soc. 477, 2599–2612 (2018).

    Article  ADS  Google Scholar 

  13. McWilliams, S. T., Ostriker, J. P. & Pretorius, F. Astrophys. J. 789, 156 (2014).

    Article  ADS  Google Scholar 

  14. Siemens, X., Ellis, J., Jenet, F. & Romano, J. D. Class. Quantum Grav. 30, 224015 (2013).

    Article  ADS  Google Scholar 

  15. Sesana, A., Shankar, F., Bernardi, M. & Sheth, R. K. Mon. Not. R. Astron. Soc. 463, L6–L11 (2016).

    Article  ADS  Google Scholar 

  16. Mingarelli, C. M. F. et al. Nat. Astron. 1, 886–892 (2017).

    Article  ADS  Google Scholar 

  17. Mingarelli, C. M. F., Sidery, T., Mandel, I. & Vecchio, A. Phys. Rev. D 88, 062005 (2013).

    Article  ADS  Google Scholar 

  18. Burke-Spolaor, S. Preprint at (2015).

Download references


I thank J. Lazio, D. Foreman-Mackey and X. Siemens for useful discussions. I also thank S. Taylor and S. Burke-Spolaor for permission to edit and reproduce some of their figures. The Flatiron Institute is funded by the Simons Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Chiara M. F. Mingarelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mingarelli, C.M.F. Probing supermassive black hole binaries with pulsar timing. Nat Astron 3, 8–10 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing