Probing supermassive black hole binaries with pulsar timing

The detection of a gravitational-wave background at nanohertz frequencies can tell us if and how supermassive black holes merge, and inform our knowledge of galaxy merger rates and supermassive black hole masses. All we have to do is time pulsars.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Astrophysics manifesting in the gravitational-wave background strain spectrum.

S. Burke-Spolaor (West Virginia University)

Fig. 2: Time to detection of different models of the gravitational-wave background (GWB).

adapted from ref. 8, AAS

References

  1. 1.

    Kormendy, J. & Ho, L. C. Ann. Rev. Astron. Astrophys. 51, 511–653 (2013).

    ADS  Article  Google Scholar 

  2. 2.

    Begelman, M. C., Blandford, R. D. & Rees, M. J. Nature 287, 307–309 (1980).

    ADS  Article  Google Scholar 

  3. 3.

    Milosavljevic, M. & Merritt, D. Astrophys. J. 596, 860–878 (2003).

    ADS  Article  Google Scholar 

  4. 4.

    Khan, F. M., Holley-Bockelmann, K., Berczik, P. & Just, A. Astrophys. J. 773, 100–106 (2013).

    ADS  Article  Google Scholar 

  5. 5.

    Sesana, A. Mon. Not. R. Astron. Soc. 433, L1–L5 (2013).

    ADS  Article  Google Scholar 

  6. 6.

    Detweiler, S. Astrophys. J. 234, 1100–1104 (1979).

    ADS  Article  Google Scholar 

  7. 7.

    Hellings, R. W. & Downs, G. S. Astrophys. J. Lett. 265, L39–L42 (1983).

    ADS  Article  Google Scholar 

  8. 8.

    Taylor, S. R. et al. Astrophys. J. Lett. 819, L6 (2016).

    ADS  Article  Google Scholar 

  9. 9.

    Phinney, E. S. Preprint at https://arxiv.org/abs/astro-ph/0108028 (2001).

  10. 10.

    Arzoumanian, Z. et al. Astrophys. J. 821, 13 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Ryu, T. et al. Mon. Not. R. Astron. Soc. 473, 3410–3433 (2018).

    ADS  Article  Google Scholar 

  12. 12.

    Bonetti, M., Sesana, A., Barausse, E. & Haardt, F. Mon. Not. R. Astron. Soc. 477, 2599–2612 (2018).

    ADS  Article  Google Scholar 

  13. 13.

    McWilliams, S. T., Ostriker, J. P. & Pretorius, F. Astrophys. J. 789, 156 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    Siemens, X., Ellis, J., Jenet, F. & Romano, J. D. Class. Quantum Grav. 30, 224015 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    Sesana, A., Shankar, F., Bernardi, M. & Sheth, R. K. Mon. Not. R. Astron. Soc. 463, L6–L11 (2016).

    ADS  Article  Google Scholar 

  16. 16.

    Mingarelli, C. M. F. et al. Nat. Astron. 1, 886–892 (2017).

    ADS  Article  Google Scholar 

  17. 17.

    Mingarelli, C. M. F., Sidery, T., Mandel, I. & Vecchio, A. Phys. Rev. D 88, 062005 (2013).

    ADS  Article  Google Scholar 

  18. 18.

    Burke-Spolaor, S. Preprint at https://arxiv.org/abs/1511.07869 (2015).

Download references

Acknowledgements

I thank J. Lazio, D. Foreman-Mackey and X. Siemens for useful discussions. I also thank S. Taylor and S. Burke-Spolaor for permission to edit and reproduce some of their figures. The Flatiron Institute is funded by the Simons Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chiara M. F. Mingarelli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mingarelli, C.M.F. Probing supermassive black hole binaries with pulsar timing. Nat Astron 3, 8–10 (2019). https://doi.org/10.1038/s41550-018-0666-y

Download citation

Further reading