Perspective | Published:

KAGRA: 2.5 generation interferometric gravitational wave detector

Nature Astronomyvolume 3pages3540 (2019) | Download Citation

Abstract

The recent detections of gravitational waves (GWs) reported by the LIGO and Virgo collaborations have made a significant impact on physics and astronomy. A global network of GW detectors will play a key role in uncovering the unknown nature of the sources in coordinated observations with astronomical telescopes and detectors. Here we introduce KAGRA, a new GW detector with two 3 km baseline arms arranged in an ‘L’ shape. KAGRA’s design is similar to the second generations of Advanced LIGO and Advanced Virgo, but it will be operating at cryogenic temperatures with sapphire mirrors. This low-temperature feature is advantageous for improving the sensitivity around 100 Hz and is considered to be an important feature for the third-generation GW detector concept (for example, the Einstein Telescope of Europe or the Cosmic Explorer of the United States). Hence, KAGRA is often called a 2.5-generation GW detector based on laser interferometry. KAGRA’s first observation run is scheduled in late 2019, aiming to join the third observation run of the advanced LIGO–Virgo network. When operating along with the existing GW detectors, KAGRA will be helpful in locating GW sources more accurately and determining the source parameters with higher precision, providing information for follow-up observations of GW trigger candidates.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

  2. 2.

    Hulse, R. A. & Taylor, J. H. Discovery of a pulsar in a binary system. Astrophys. J. 195, L51 (1975).

  3. 3.

    Taylor, J. H. & Weisberg, J. M. Gravitational radiation and the binary pulsar. Astrophys. J. 253, 908 (1981).

  4. 4.

    Abbott, B. P. et al. GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016).

  5. 5.

    Abbott, B. P. et al. GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118, 221101 (2017).

  6. 6.

    Abbott, B. P. et al. GW170608: observation of a 19 solar-mass binary black hole coalescence. Astrophys. J. Lett. 851, L35 (2017).

  7. 7.

    Abbott, B. P. et al. GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119, 141101 (2017).

  8. 8.

    Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

  9. 9.

    Aasi, J. et al. Advanced LIGO. Class. Quantum Gravity 32, 074001 (2015).

  10. 10.

    Acernese, F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Gravity 32, 024001 (2015).

  11. 11.

    Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. Lett. 848, L12 (2017).

  12. 12.

    Mizuno, J. et al. Resonant sideband extraction: a new configuration for interferometric gravitational wave detectors. Phys. Lett. A 175, 273 (1993).

  13. 13.

    Somiya, K. Detector configuration of KAGRA—the Japanese cryogenic gravitational-wave detector. Class. Quantum Gravity 29, 124007 (2012).

  14. 14.

    Kawashima, K. Laser Interferometer (TENKO-10 and -100) for Gravitational Wave Antenna Development Report No. 640 (Institute of Space and Astronautical Science, 1991).

  15. 15.

    Sato, S. et al. High-gain power recycling of a Fabry–Perot Michelson interferometer for a gravitational-wave antenna. Appl. Opt. 36, 1446 (1997).

  16. 16.

    Tsubono, K. in Gravitational Wave Experiments (eds Coccia, E., Pizzella, G. & Ronga F.) 112–114 (World Scientific, Singapore, 1995).

  17. 17.

    Ando, M. et al. Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our Galaxy. Phys. Rev. Lett. 86, 3950 (2001).

  18. 18.

    Sato, S. et al. Ultrastable performance of an underground-based laser interferometer observatory for gravitational waves. Phys. Rev. D 69, 102005 (2014).

  19. 19.

    Ando, M. et al. Analysis methods for burst gravitational waves with TAMA data. Class. Quantum Gravity 21, S1679 (2004).

  20. 20.

    Christensen, N. et al. LIGO S6 detector characterization studies. Class. Quantum Gravity 27, 194010 (2010).

  21. 21.

    Uchiyama, T. et al. Reduction of thermal fluctuations in a cryogenic laser interferometric gravitational wave detector. Phys. Rev. Lett. 108, 141101 (2012).

  22. 22.

    Kuroda, K. et al. Large-scale cryogenic gravitational wave telescope. Int. J. Mod. Phys. D 8, 557 (1999).

  23. 23.

    Akutsu, T. et al. Construction of KAGRA: an underground gravitational-wave observatory. Prog. Theor. Exp. Phys. 2018, 013F01 (2018).

  24. 24.

    Takeda, H. et al. Polarization test of gravitational waves from compact binary coalescences. Phys. Rev. D 98, 022008 (2018).

  25. 25.

    Abbot, B. P. et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 21, 3 (2018).

  26. 26.

    Miller, J. et al. Prospects for doubling the range of Advanced LIGO. Phys. Rev. D 91, 062005 (2015).

  27. 27.

    Degallaix, J. Advanced Virgo+ Preliminary Studies VIR-0300A-18 (Virgo Collaboration, 2018).

  28. 28.

    Punturo, M. et al. The Einstein Telescope: a third-generation gravitational wave observatory. Class. Quantum Gravity 27, 194002 (2010).

  29. 29.

    Abbott, B. P. et al. Exploring the sensitivity of next generation gravitational wave detectors. Class. Quantum Gravity 34, 044001 (2017).

Download references

Acknowledgements

This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: JP17H06358, JP17H06361 and JP17H06364, JSPS Core-to-Core Program (A. Advanced Research Networks), JSPS Grant-in-Aid for Scientific Research (S) 17H06133, the joint research programme of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF) grant of Korea and Computing Infrastructure Project of KISTI-GSDC in Korea, the LIGO project, and the Virgo project. The authors appreciate M. Karouzos for his kind feedback to improve the draft.

Author information

Affiliations

  1. National Astronomical Observatory of Japan (NAOJ), Mitaka, Tokyo, Japan

    • T. Akutsu
    • , M. Ando
    • , M. A. Barton
    • , E. Capocasa
    • , R. Flaminio
    • , M.-K. Fujimoto
    • , M. Leonardi
    • , M. Marchio
    • , K. Nakamura
    • , A. Shoda
    • , R. Takahashi
    • , S. Tanioka
    • , E. N. Tapia San Martin
    • , D. Tatsumi
    •  & S. Zeidler
  2. Advanced Technology Center, National Astronomical Observatory of Japan (NAOJ), Mitaka, Tokyo, Japan

    • T. Akutsu
    • , M. Fukushima
    • , B. Ikenoue
    • , Y. Obuchi
    • , S. Saitou
    • , N. Sato
    •  & F. Uraguchi
  3. Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

    • M. Ando
    • , N. Aritomi
    • , Y. Enomoto
    • , T. Kawasaki
    • , K. Komori
    • , Y. Michimura
    • , C. P. Ooi
    • , Y. Sakai
    • , T. Shimoda
    • , H. Takeda
    • , K. Tsubono
    • , S. Wada
    •  & J. Yokoyama
  4. Research Center for the Early Universe (RESCEU), The University of Tokyo, Bunkyo-ku, Tokyo, Japan

    • M. Ando
    • , K. Cannon
    • , K. Eda
    • , F-L. Lin
    • , S. Morisaki
    • , K. Ueno
    •  & J. Yokoyama
  5. Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Kashiwa, Chiba, Japan

    • K. Arai
    • , Y. Arai
    • , K. Craig
    • , M. Fukunaga
    • , K. Hasegawa
    • , E. Hirose
    • , T. Kinugawa
    • , T. Morozumi
    • , K. Nagano
    • , M. Nakano
    • , T. Ochi
    • , K. Ono
    • , T. Suzuki
    • , H. Tagoshi
    • , T. Ushiba
    •  & H. Yuzurihara
  6. Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan

    • S. Araki
    •  & A. Yamamoto
  7. Earthquake Research Institute, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

    • A. Araya
    •  & A. Takamori
  8. Department of Mathematics and Physics, Hirosaki University, Hirosaki, Aomori, Japan

    • H. Asada
  9. Kamioka Branch, National Astronomical Observatory of Japan (NAOJ), Hida, Gifu, Japan

    • Y. Aso
    •  & N. Ohishi
  10. The Graduate University for Advanced Studies (SOKENDAI), Mitaka, Tokyo, Japan

    • Y. Aso
    • , K. Okutomi
    •  & S. Tanioka
  11. Graduate School of Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan

    • S. Atsuta
    • , J. Kasuya
    • , Y. Kataoka
    • , N. Kawai
    •  & K. Somiya
  12. Institute for Cosmic Ray Research (ICRR), KAGRA Observatory, The University of Tokyo, Hida, Gifu, Japan

    • K. Awai
    • , M. Kamiizumi
    • , S. Kawamura
    • , S. Kirii
    • , K. Kokeyama
    • , O. Miyakawa
    • , K. Miyo
    • , S. Miyoki
    • , M. Ohashi
    • , F. E. Peña Arellano
    • , Y. Saito
    • , T. Tomura
    • , T. Uchiyama
    • , T. Yamamoto
    •  & T. Yokozawa
  13. Korea Institute of Science and Technology Information (KISTI), Daejeon, Korea

    • S. Bae
    •  & G. Kang
  14. Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan

    • L. Baiotti
    •  & S. Kanemura
  15. Department of Physics, National Taiwan Normal University, Taipei, Taiwan

    • C-S. Chen
    • , T-W. Chiu
    • , Y-K. Chu
    • , C-Z. Huang
    • , H-S. Kuo
    • , F-L. Lin
    •  & W-R. Xu
  16. Department of Physics, Sogang University, Seoul, Korea

    • K. Cho
    •  & J. Park
  17. Institute of Physics, Academia Sinica, Taipei, Taiwan

    • W. Creus
    • , S. Haino
    •  & Y. Inoue
  18. Department of Physics, University of Toyama, Toyama, Toyama, Japan

    • K. Doi
    • , T. Furuhata
    • , K. Hashino
    • , M. Kakizaki
    • , S. Kanbara
    • , H. Kitazawa
    • , F. Matsushima
    • , Y. Moriwaki
    • , K. Yamamoto
    • , K. Yokogawa
    •  & T. Yoshioka
  19. Laboratoire d’Annecy de Physique des Particules (LAPP), Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, F-74941, Annecy, France

    • R. Flaminio
  20. Department of Astronomy, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

    • Y. Fujii
    • , H. Tahara
    •  & J. Yokoyama
  21. Department of Applied Physics, Fukuoka University, Jonan, Fukuoka, Japan

    • K. Hayama
    •  & K. Kotake
  22. Faculty of Engineering, University of Toyama, Toyama, Toyama, Japan

    • S. Hirobayashi
  23. Institute for Cosmic Ray Research (ICRR), Research Center for Cosmic Neutrinos (RCCN), The University of Tokyo, Kashiwa, Chiba, Japan

    • B. H. Hsieh
    • , H. Tanaka
    • , T. Yamada
    •  & K. Yamamoto
  24. Yukawa Institute for Theoretical Physics (YITP), Kyoto University, Kyoto, Kyoto, Japan

    • K. Ioka
    •  & M. Shibata
  25. Graduate School of Science, Osaka City University, Osaka, Osaka, Japan

    • Y. Itoh
    • , T. Kaji
    • , N. Kanda
    • , M. Kaneyama
    • , Y. Kitaoka
    • , A. Miyamoto
    • , K. Nakao
    • , M. Sasai
    • , K. Tanaka
    •  & S. Tsuchida
  26. JAXA Institute of Space and Astronautical Science, Sagamihara, Kanagawa, Japan

    • K. Izumi
  27. Institute for Cosmic Ray Research (ICRR), The University of Tokyo, Kashiwa, Chiba, Japan

    • T. Kajita
  28. Department of Physics, Ewha Womans University, Seoul, Korea

    • C. Kim
  29. Department of Physics, Myongji University, Yongin, Korea

    • J. Kim
  30. Department of Computer Simulation, Inje University, Gimhae, Korea

    • J. C. Kim
    •  & H. W. Lee
  31. National Institute for Mathematical Sciences, Daejeon, Korea

    • W. S. Kim
    • , J. J. Oh
    • , S. H. Oh
    •  & E. J. Son
  32. School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea

    • Y.-M. Kim
  33. Applied Research Laboratory, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan

    • N. Kimura
    •  & T. Tomaru
  34. Department of Physical Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan

    • Y. Kojima
  35. Department of Physics and Institute of Astronomy, National Tsing Hua University, Hsinchu, Taiwan

    • A. K. H. Kong
    •  & W.-T. Ni
  36. Institute for Cosmic Ray Research (ICRR), Research Center for Cosmic Neutrinos (RCCN), The University of Tokyo, Hida, Gifu, Japan

    • R. Kozu
    •  & T. Miyamoto
  37. California Institute of Technology, Pasadena, CA, USA

    • R. Kumar
  38. Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan

    • S. Kuroyanagi
    •  & A. Nishizawa
  39. Department of Physics, Hanyang University, Seoul, Korea

    • H. K. Lee
  40. Korea Astronomy and Space Science Institute (KASI), Daejeon, Korea

    • H. M. Lee
  41. National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan

    • C-Y. Lin
  42. Department of Physics, Tamkang University, New Taipei City, Taiwan

    • G. C. Liu
  43. Department of Advanced Materials Science, The University of Tokyo, Kashiwa, Chiba, Japan

    • Y. Liu
  44. Istituto Nazionale di Fisica Nucleare, Sapienza University, Roma, Italy

    • E. Majorana
    •  & L. Naticchioni
  45. The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan

    • S. Mano
  46. School of Physics, Korea Institute for Advanced Study (KIAS), Seoul, Korea

    • T. Matsui
  47. Institute for Photon Science and Technology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

    • N. Mio
  48. Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan

    • W. Morii
  49. Institute for Laser Science, University of Electro-Communications, Chofu, Tokyo, Japan

    • M. Musha
    •  & A. Suemasa
  50. National Institute of Information and Communications Technology (NICT), Koganei, Tokyo, Japan

    • S. Nagano
  51. Department of Physics, Kyoto University, Kyoto, Kyoto, Japan

    • T. Nakamura
    • , T. Narikawa
    • , N. Seto
    •  & T. Tanaka
  52. Faculty of Law, Ryukoku University, Kyoto, Japan

    • H. Nakano
  53. Department of Physics, University of Notre Dame, Notre Dame, IN, USA

    • L. Nguyen Quynh
  54. Department of Physics, Wuhan Institute of Physics and Mathematics, CAS, Wuhan, China

    • W.-T. Ni
  55. The University of Shanghai for Science and Technology, Shanghai, China

    • W.-T. Ni
  56. Faculty of Engineering, Niigata University, Niigata, Niigata, Japan

    • M. Ohkawa
    • , T. Sato
    •  & T. Suzuki
  57. Graduate School of Science and Technology, Niigata University, Niigata, Niigata, Japan

    • K. Oohara
    • , Y. Sakai
    • , T. Wakamatsu
    •  & Y. Watanabe
  58. Center for Measurement Standards, Industrial Technology Research Institute, Hsinchu, 30011, Taiwan

    • S-S. Pan
  59. Department of Engineering, University of Sannio, Benevento, Italy

    • I. Pinto
  60. Faculty of Arts and Science, Kyushu University, Fukuoka, Fukuoka, Japan

    • N. Sago
  61. Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan

    • M. Saijo
  62. National Institute of Technology, Nagaoka College, Nagaoka, Niigata, Japan

    • K. Sakai
  63. Kavli Institute for the Physics and Mathematics of the Universe (IPMU), Kashiwa, Chiba, Japan

    • M. Sasaki
  64. Nagaoka University of Technology, Nagaoka, Niigata, Japan

    • Y. Sasaki
    • , H. Takahashi
    •  & S. Ueki
  65. Graduate School of Science and Engineering, Hosei University, Koganei, Tokyo, Japan

    • S. Sato
  66. Faculty of Science, Toho University, Funabashi, Chiba, Japan

    • Y. Sekiguchi
  67. Faculty of Information Science and Technology, Osaka Institute of Technology, Hirakata, Osaka, Japan

    • H. Shinkai
    •  & S. Yamamoto
  68. School of High Energy Accelerator Science, The Graduate University for Advanced Studies (SOKENDAI), Tsukuba, Ibaraki, Japan

    • T. Shishido
  69. Istituto Nazionale di Fisica Nucleare, University of Perugia, Perugia, Italy

    • F. Travasso
    •  & H. Vocca
  70. Faculty of Science, Niigata University, Niigata, Niigata, Japan

    • N. Uchikata
  71. Department of Communications, National Defense Academy of Japan, Yokosuka, Kanagawa, Japan

    • T. Uehara
  72. Department of Physics, University of Florida, Gainesville, FL, USA

    • T. Uehara
  73. Department of Physics and Astronomy, Sejong University, Seoul, Korea

    • M. H. P. M. van Putten
  74. Department of Physics, Korea University, Seoul, Korea

    • T. H. Yoon
  75. Department of Astronomy, Beijing Normal University, Beijing, China

    • Z.-H. Zhu

Consortia

  1. KAGRA collaboration

Contributions

C. Kim, Y. Michimura, H. Shinkai and A. Shoda were responsible for writing the first draft of the manuscript and incorporated comments from the collaboration in the course of completing the manuscript. All members of the KAGRA collaboration were responsible for the scope and scientific facts of the manuscript, including data analysis and the resulting figures.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to C. Kim or Y. Michimura or H. Shinkai or A. Shoda.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41550-018-0658-y