Perspective | Published:

Visualization of the challenges and limitations of the long-term sunspot number record

Nature Astronomyvolume 3pages205211 (2019) | Download Citation


The solar cycle periodically reshapes the magnetic structure and radiative output of the Sun and determines its impact on the heliosphere roughly every 11 years. Besides this main periodicity, it shows century-long variations (including periods of abnormally low solar activity called grand minima). The Maunder Minimum (1645–1715) has generated significant interest as the archetype of a grand minimum in magnetic activity for the Sun and other stars, suggesting a potential link between the Sun and changes in terrestrial climate. Recent reanalyses of sunspot observations have yielded a conflicted view on the evolution of solar activity during the past 400 years (a steady increase versus a constant level). This has ignited a concerted community-wide effort to understand the depth of the Maunder Minimum and the subsequent secular evolution of solar activity. The goal of this Perspective is to review recent work that uses historical data to estimate long-term solar variability, and to provide context to users of these estimates that may not be aware of their limitations. We propose a clear visual guide than can be used to easily assess observational coverage for different periods, as well as the level of disagreement between currently proposed sunspot group number series.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

A Python Jupyter notebook, along with the necessary data to reproduce all plots presented here can be found at We request that you use data in this repository only to reproduce our analysis, but get them from the original sources if you intend to use them for research purposes.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Vaquero, J. M. & Vázquez, M. The Sun Recorded Through History: Scientific Data Extracted from Historical Documents Astrophysics and Space Science Library 361 (Springer, New York, 2009).

  2. 2.

    Kopp, G., Krivova, N., Wu, C. J. & Lean, J. The impact of the revised sunspot record on solar irradiance reconstructions. Sol. Phys. 291, 2951–2965 (2016).

  3. 3.

    Gray, L. J. et al. Solar influences on climate. Rev. Geophys. 48, RG4001 (2010).

  4. 4.

    Wright, J. T. Do we know of any Maunder Minimum stars? Astron. J. 128, 1273–1278 (2004).

  5. 5.

    Maycock, A. C. et al. Possible impacts of a future grand solar minimum on climate: stratospheric and global circulation changes. J. Geophys. Res. 120, 9043–9058 (2015).

  6. 6.

    Eddy, J. A. The Maunder Minimum. Science 192, 1189–1202 (1976).

  7. 7.

    Usoskin, I. G., Solanki, S. K., Schüssler, M., Mursula, K. & Alanko, K. Millennium-scale sunspot number reconstruction: evidence for an unusually active Sun since the 1940s. Phys. Rev. Lett. 91, 211101 (2003).

  8. 8.

    Usoskin, I. G. et al. The Maunder Minimum (1645–1715) was indeed a grand minimum: a reassessment of multiple datasets. Astron. Astrophys. 581, A95 (2015).

  9. 9.

    Carrasco, V. M. S., Álvarez, J. V. & Vaquero, J. M. Sunspots during the Maunder Minimum from Machina Coelestis by Hevelius. Sol. Phys. 290, 2719–2732 (2015).

  10. 10.

    Vaquero, J. M., Kovaltsov, G. A., Usoskin, I. G., Carrasco, V. M. S. & Gallego, M. C. Level and length of cyclic solar activity during the Maunder Minimum as deduced from the active-day statistics. Astron. Astrophys. 577, A71 (2015).

  11. 11.

    Vaquero, J. M. et al. A revised collection of sunspot group numbers. Sol. Phys. 291, 3061–3074 (2016).

  12. 12.

    Asvestari, E. et al. Assessment of different sunspot number series using the cosmogenic isotope 44Ti in meteorites. Mon. Not. R. Astron. Soc. 467, 1608–1613 (2017).

  13. 13.

    Hoyt, D. V. & Schatten, K. H. Group sunspot numbers: a new solar activity reconstruction. Sol. Phys. 181, 491–512 (1998).

  14. 14.

    Clette, F., Svalgaard, L., Vaquero, J. M. & Cliver, E. W. Revisiting the sunspot number. A 400-year perspective on the solar cycle. Space Sci. Rev. 186, 35–103 (2014).

  15. 15.

    Clette, F. & Lefèvre, L. The new sunspot number: assembling all corrections. Sol. Phys. 291, 2629–2651 (2016).

  16. 16.

    Svalgaard, L. & Schatten, K. H. Reconstruction of the sunspot group number: the backbone method. Sol. Phys. 291, 2653–2684 (2016).

  17. 17.

    Cliver, E. W. & Ling, A. G. The discontinuity circa 1885 in the group sunspot number. Sol. Phys. 291, 2763–2784 (2016).

  18. 18.

    Chatzistergos, T., Usoskin, I. G., Kovaltsov, G. A., Krivova, N. A. & Solanki, S. K. New reconstruction of the sunspot group numbers since 1739 using direct calibration and “backbone” methods. Astron. Astrophys. 602, A69 (2017).

  19. 19.

    Usoskin, I. G. et al. A new calibrated sunspot group series since 1749: statistics of active day fractions. Sol. Phys. 291, 2685–2708 (2016).

  20. 20.

    Willamo, T., Usoskin, I. G. & Kovaltsov, G. A. Updated sunspot group number reconstruction for 1749–1996 using the active day fraction method. Astron. Astrophys. 601, A109 (2017).

  21. 21.

    Zolotova, N. V. & Ponyavin, D. I. The Maunder Minimum is not as grand as it seemed to be. Astrophys. J. 800, 42 (2015).

  22. 22.

    Kovaltsov, G. A., Usoskin, I. G. & Mursula, K. An upper limit on sunspot activity during the Maunder Minimum. Sol. Phys. 224, 95–101 (2004).

  23. 23.

    Ivanov, V. G. & Miletsky, E. V. Latitude and power characteristics of solar activity at the end of the Maunder Minimum. Geomagn. Aeronomy 57, 788–791 (2017).

  24. 24.

    SILSO World Data Center The International Sunspot Number (SIDC, 1750–2000);

  25. 25.

    Lockwood, M., Owens, M. J. & Barnard, L. Centennial variations in sunspot number, open solar flux, and streamer belt width: 2. Comparison with the geomagnetic data. J. Geophys. Res. 119, 5183–5192 (2014).

  26. 26.

    Longest continuous observational science data. Guinness World Records (2004).

  27. 27.

    Ribes, J. C. & Nesme-Ribes, E. The solar sunspot cycle in the Maunder Minimum ad 1645 to ad 1715. Astron. Astrophys. 276, 549–563 (1993).

  28. 28.

    Dudok de Wit, T. A method for filling gaps in solar irradiance and solar proxy data. Astron. Astrophys. 533, A29 (2011).

  29. 29.

    Hayakawa, H., Iwahashi, K., Tamazawa, H., Toriumi, S. & Shibata, K. Iwahashi Zenbei’s sunspot drawings in 1793 in Japan. Sol. Phys. 293, 8 (2018).

  30. 30.

    Diercke, A., Arlt, R. & Denker, C. Digitization of sunspot drawings by Spörer made in 1861–1894. Astron. Nachrichten 336, 53–62 (2015).

  31. 31.

    Svalgaard, L. Reconstruction of solar extreme ultraviolet flux 1740–2015. Sol. Phys. 291, 2981–3010 (2016).

  32. 32.

    Neuhäuser, R. & Neuhäuser, D. L. Sunspot numbers based on historic records in the 1610s: early telescopic observations by Simon Marius and others. Astron. Nachrichten 337, 581–620 (2016).

  33. 33.

    Arlt, R. The butterfly diagram in the eighteenth century. Sol. Phys. 255, 143–153 (2009).

  34. 34.

    Vaquero, J. M., Gallego, M. C., Usoskin, I. G. & Kovaltsov, G. A. Revisited sunspot data: a new scenario for the onset of the Maunder Minimum. Astrophys. J. 731, L24 (2011).

  35. 35.

    Senthamizh Pavai, V., Arlt, R., Dasi-Espuig, M., Krivova, N. A. & Solanki, S. K. Sunspot areas and tilt angles for solar cycles 7–10. Astron. Astrophys. 584, A73 (2015).

  36. 36.

    Vaquero, J. M., Nogales, J. M. & Sánchez- Bajo, F. Sunspot latitudes during the Maunder Minimum: a machine-readable catalogue from previous studies. Adv. Space Res. 55, 1546–1552 (2015).

  37. 37.

    Baranyi, T., Győri, L. & Ludmány, A. On-line tools for solar data compiled at the Debrecen observatory and their extensions with the Greenwich sunspot data. Sol. Phys. 291, 3081–3102 (2016).

  38. 38.

    Arlt, R., Senthamizh Pavai, V., Schmiel, C. & Spada, F. Sunspot positions, areas, and group tilt angles for 1611–1631 from observations by Christoph Scheiner. Astron. Astrophys. 595, A104 (2016).

  39. 39.

    Györi, L., Ludmány, A. & Baranyi, T. Comparative analysis of Debrecen sunspot catalogues. Mon. Not. R. Astron. Soc. 465, 1259–1273 (2017).

  40. 40.

    Tlatov, A. G., Makarova, V. V., Skorbezh, N. N. & Muñoz Jaramillo, A. Kislovodsk Mountain Astronomical Station (KMAS) Sunspot Group Data v2 (Harvard Dataverse, 2017);

  41. 41.

    Vokhmyanin, M. V. & Zolotova, N. V. Sunspot positions and areas from observations by Galileo Galilei. Sol. Phys. 293, 31 (2018).

Download references


We thank the International Space Science Institute (ISSI-Bern) and the members of its team for the Recalibration of the Sunspot Number Series for providing the support and insight that made this Perspective possible. We also thank the ISSI team and L. Svalgard for useful comments and suggestions. This research is partly funded by the NASA Grand Challenge grant NNX14AO83G and NASA LWS grant NNX16AB77G, by the Economy and Infrastructure Counselling of the Junta of Extremadura through project IB16127 and grant GR15137 (co-financed by the European Regional Development Fund), and by the Ministerio de Economía y Competitividad of the Spanish Government (AYA2014-57556-P and CGL2017-87917-P). Sunspot number series data are provided by the World Data Center SILSO, Royal Observatory of Belgium, Brussels, or kindly provided by the original authors10,18,21,23. Butterfly diagram data are provided by the St. Petersburg State University41, the Historical Archive of Sunspot Observations (HASO) of the Universidad de Extremadura34,36, the Leibniz Institute for Astrophysics Potsdam (AIP)30,33,35,38, the Debrecen Observatory37,39 and the Kislovodsk Astronomical Mountain Station40.

Author information


  1. SouthWest Research Institute, Boulder, CO, USA

    • Andrés Muñoz-Jaramillo
  2. High Altitude Observatory, Boulder, CO, USA

    • Andrés Muñoz-Jaramillo
  3. National Solar Observatory, Boulder, CO, USA

    • Andrés Muñoz-Jaramillo
  4. Departamento de Física, Universidad de Extremadura, Mérida, Spain

    • José M. Vaquero
  5. Instituto Universitario de Investigación del Agua, Cambio Climático y Sostenibilidad (IACYS), Universidad de Extremadura, Mérida, Spain

    • José M. Vaquero


  1. Search for Andrés Muñoz-Jaramillo in:

  2. Search for José M. Vaquero in:


J.M.V. initiated the idea and collaboration behind the Perspective. A.M.-J. condensed the message in visual and written form. Both authors wrote and reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Andrés Muñoz-Jaramillo.

About this article

Publication history




Issue Date


Further reading