Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Visualization of the challenges and limitations of the long-term sunspot number record

Abstract

The solar cycle periodically reshapes the magnetic structure and radiative output of the Sun and determines its impact on the heliosphere roughly every 11 years. Besides this main periodicity, it shows century-long variations (including periods of abnormally low solar activity called grand minima). The Maunder Minimum (1645–1715) has generated significant interest as the archetype of a grand minimum in magnetic activity for the Sun and other stars, suggesting a potential link between the Sun and changes in terrestrial climate. Recent reanalyses of sunspot observations have yielded a conflicted view on the evolution of solar activity during the past 400 years (a steady increase versus a constant level). This has ignited a concerted community-wide effort to understand the depth of the Maunder Minimum and the subsequent secular evolution of solar activity. The goal of this Perspective is to review recent work that uses historical data to estimate long-term solar variability, and to provide context to users of these estimates that may not be aware of their limitations. We propose a clear visual guide than can be used to easily assess observational coverage for different periods, as well as the level of disagreement between currently proposed sunspot group number series.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Historical (left) versus modern (right) observations of sunspot groups.
Fig. 2: Long-term evolution of solar activity.
Fig. 3: Observational coverage of historical sunspot group data.
Fig. 4: New way of visualizing observational gaps in historical solar data.

Data availability

A Python Jupyter notebook, along with the necessary data to reproduce all plots presented here can be found at https://github.com/amunozj/NatAs_SN_Perspective. We request that you use data in this repository only to reproduce our analysis, but get them from the original sources if you intend to use them for research purposes.

References

  1. Vaquero, J. M. & Vázquez, M. The Sun Recorded Through History: Scientific Data Extracted from Historical Documents Astrophysics and Space Science Library 361 (Springer, New York, 2009).

  2. Kopp, G., Krivova, N., Wu, C. J. & Lean, J. The impact of the revised sunspot record on solar irradiance reconstructions. Sol. Phys. 291, 2951–2965 (2016).

    ADS  Article  Google Scholar 

  3. Gray, L. J. et al. Solar influences on climate. Rev. Geophys. 48, RG4001 (2010).

    ADS  Article  Google Scholar 

  4. Wright, J. T. Do we know of any Maunder Minimum stars? Astron. J. 128, 1273–1278 (2004).

    ADS  Article  Google Scholar 

  5. Maycock, A. C. et al. Possible impacts of a future grand solar minimum on climate: stratospheric and global circulation changes. J. Geophys. Res. 120, 9043–9058 (2015).

    Google Scholar 

  6. Eddy, J. A. The Maunder Minimum. Science 192, 1189–1202 (1976).

    ADS  Article  Google Scholar 

  7. Usoskin, I. G., Solanki, S. K., Schüssler, M., Mursula, K. & Alanko, K. Millennium-scale sunspot number reconstruction: evidence for an unusually active Sun since the 1940s. Phys. Rev. Lett. 91, 211101 (2003).

    ADS  Article  Google Scholar 

  8. Usoskin, I. G. et al. The Maunder Minimum (1645–1715) was indeed a grand minimum: a reassessment of multiple datasets. Astron. Astrophys. 581, A95 (2015).

    Article  Google Scholar 

  9. Carrasco, V. M. S., Álvarez, J. V. & Vaquero, J. M. Sunspots during the Maunder Minimum from Machina Coelestis by Hevelius. Sol. Phys. 290, 2719–2732 (2015).

    ADS  Article  Google Scholar 

  10. Vaquero, J. M., Kovaltsov, G. A., Usoskin, I. G., Carrasco, V. M. S. & Gallego, M. C. Level and length of cyclic solar activity during the Maunder Minimum as deduced from the active-day statistics. Astron. Astrophys. 577, A71 (2015).

    ADS  Article  Google Scholar 

  11. Vaquero, J. M. et al. A revised collection of sunspot group numbers. Sol. Phys. 291, 3061–3074 (2016).

    ADS  Article  Google Scholar 

  12. Asvestari, E. et al. Assessment of different sunspot number series using the cosmogenic isotope 44Ti in meteorites. Mon. Not. R. Astron. Soc. 467, 1608–1613 (2017).

    ADS  Google Scholar 

  13. Hoyt, D. V. & Schatten, K. H. Group sunspot numbers: a new solar activity reconstruction. Sol. Phys. 181, 491–512 (1998).

    ADS  Article  Google Scholar 

  14. Clette, F., Svalgaard, L., Vaquero, J. M. & Cliver, E. W. Revisiting the sunspot number. A 400-year perspective on the solar cycle. Space Sci. Rev. 186, 35–103 (2014).

    ADS  Article  Google Scholar 

  15. Clette, F. & Lefèvre, L. The new sunspot number: assembling all corrections. Sol. Phys. 291, 2629–2651 (2016).

    ADS  Article  Google Scholar 

  16. Svalgaard, L. & Schatten, K. H. Reconstruction of the sunspot group number: the backbone method. Sol. Phys. 291, 2653–2684 (2016).

    ADS  Article  Google Scholar 

  17. Cliver, E. W. & Ling, A. G. The discontinuity circa 1885 in the group sunspot number. Sol. Phys. 291, 2763–2784 (2016).

    ADS  Article  Google Scholar 

  18. Chatzistergos, T., Usoskin, I. G., Kovaltsov, G. A., Krivova, N. A. & Solanki, S. K. New reconstruction of the sunspot group numbers since 1739 using direct calibration and “backbone” methods. Astron. Astrophys. 602, A69 (2017).

    ADS  Article  Google Scholar 

  19. Usoskin, I. G. et al. A new calibrated sunspot group series since 1749: statistics of active day fractions. Sol. Phys. 291, 2685–2708 (2016).

    ADS  Article  Google Scholar 

  20. Willamo, T., Usoskin, I. G. & Kovaltsov, G. A. Updated sunspot group number reconstruction for 1749–1996 using the active day fraction method. Astron. Astrophys. 601, A109 (2017).

    ADS  Article  Google Scholar 

  21. Zolotova, N. V. & Ponyavin, D. I. The Maunder Minimum is not as grand as it seemed to be. Astrophys. J. 800, 42 (2015).

    ADS  Article  Google Scholar 

  22. Kovaltsov, G. A., Usoskin, I. G. & Mursula, K. An upper limit on sunspot activity during the Maunder Minimum. Sol. Phys. 224, 95–101 (2004).

    ADS  Article  Google Scholar 

  23. Ivanov, V. G. & Miletsky, E. V. Latitude and power characteristics of solar activity at the end of the Maunder Minimum. Geomagn. Aeronomy 57, 788–791 (2017).

    ADS  Article  Google Scholar 

  24. SILSO World Data Center The International Sunspot Number (SIDC, 1750–2000); http://www.sidc.be/silso/datafiles

  25. Lockwood, M., Owens, M. J. & Barnard, L. Centennial variations in sunspot number, open solar flux, and streamer belt width: 2. Comparison with the geomagnetic data. J. Geophys. Res. 119, 5183–5192 (2014).

    Article  Google Scholar 

  26. Longest continuous observational science data. Guinness World Records http://www.guinnessworldrecords.com/world-records/longest-continuous-observational-science-data (2004).

  27. Ribes, J. C. & Nesme-Ribes, E. The solar sunspot cycle in the Maunder Minimum ad 1645 to ad 1715. Astron. Astrophys. 276, 549–563 (1993).

    ADS  Google Scholar 

  28. Dudok de Wit, T. A method for filling gaps in solar irradiance and solar proxy data. Astron. Astrophys. 533, A29 (2011).

    ADS  Article  Google Scholar 

  29. Hayakawa, H., Iwahashi, K., Tamazawa, H., Toriumi, S. & Shibata, K. Iwahashi Zenbei’s sunspot drawings in 1793 in Japan. Sol. Phys. 293, 8 (2018).

    ADS  Article  Google Scholar 

  30. Diercke, A., Arlt, R. & Denker, C. Digitization of sunspot drawings by Spörer made in 1861–1894. Astron. Nachrichten 336, 53–62 (2015).

    ADS  Article  Google Scholar 

  31. Svalgaard, L. Reconstruction of solar extreme ultraviolet flux 1740–2015. Sol. Phys. 291, 2981–3010 (2016).

    ADS  Article  Google Scholar 

  32. Neuhäuser, R. & Neuhäuser, D. L. Sunspot numbers based on historic records in the 1610s: early telescopic observations by Simon Marius and others. Astron. Nachrichten 337, 581–620 (2016).

    ADS  Article  Google Scholar 

  33. Arlt, R. The butterfly diagram in the eighteenth century. Sol. Phys. 255, 143–153 (2009).

    ADS  Article  Google Scholar 

  34. Vaquero, J. M., Gallego, M. C., Usoskin, I. G. & Kovaltsov, G. A. Revisited sunspot data: a new scenario for the onset of the Maunder Minimum. Astrophys. J. 731, L24 (2011).

    ADS  Article  Google Scholar 

  35. Senthamizh Pavai, V., Arlt, R., Dasi-Espuig, M., Krivova, N. A. & Solanki, S. K. Sunspot areas and tilt angles for solar cycles 7–10. Astron. Astrophys. 584, A73 (2015).

    ADS  Article  Google Scholar 

  36. Vaquero, J. M., Nogales, J. M. & Sánchez- Bajo, F. Sunspot latitudes during the Maunder Minimum: a machine-readable catalogue from previous studies. Adv. Space Res. 55, 1546–1552 (2015).

    ADS  Article  Google Scholar 

  37. Baranyi, T., Győri, L. & Ludmány, A. On-line tools for solar data compiled at the Debrecen observatory and their extensions with the Greenwich sunspot data. Sol. Phys. 291, 3081–3102 (2016).

    ADS  Article  Google Scholar 

  38. Arlt, R., Senthamizh Pavai, V., Schmiel, C. & Spada, F. Sunspot positions, areas, and group tilt angles for 1611–1631 from observations by Christoph Scheiner. Astron. Astrophys. 595, A104 (2016).

    ADS  Article  Google Scholar 

  39. Györi, L., Ludmány, A. & Baranyi, T. Comparative analysis of Debrecen sunspot catalogues. Mon. Not. R. Astron. Soc. 465, 1259–1273 (2017).

    ADS  Article  Google Scholar 

  40. Tlatov, A. G., Makarova, V. V., Skorbezh, N. N. & Muñoz Jaramillo, A. Kislovodsk Mountain Astronomical Station (KMAS) Sunspot Group Data v2 (Harvard Dataverse, 2017); https://doi.org/10.7910/DVN/M7NDXN

  41. Vokhmyanin, M. V. & Zolotova, N. V. Sunspot positions and areas from observations by Galileo Galilei. Sol. Phys. 293, 31 (2018).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank the International Space Science Institute (ISSI-Bern) and the members of its team for the Recalibration of the Sunspot Number Series for providing the support and insight that made this Perspective possible. We also thank the ISSI team and L. Svalgard for useful comments and suggestions. This research is partly funded by the NASA Grand Challenge grant NNX14AO83G and NASA LWS grant NNX16AB77G, by the Economy and Infrastructure Counselling of the Junta of Extremadura through project IB16127 and grant GR15137 (co-financed by the European Regional Development Fund), and by the Ministerio de Economía y Competitividad of the Spanish Government (AYA2014-57556-P and CGL2017-87917-P). Sunspot number series data are provided by the World Data Center SILSO, Royal Observatory of Belgium, Brussels, or kindly provided by the original authors10,18,21,23. Butterfly diagram data are provided by the St. Petersburg State University41, the Historical Archive of Sunspot Observations (HASO) of the Universidad de Extremadura34,36, the Leibniz Institute for Astrophysics Potsdam (AIP)30,33,35,38, the Debrecen Observatory37,39 and the Kislovodsk Astronomical Mountain Station40.

Author information

Authors and Affiliations

Authors

Contributions

J.M.V. initiated the idea and collaboration behind the Perspective. A.M.-J. condensed the message in visual and written form. Both authors wrote and reviewed the manuscript.

Corresponding author

Correspondence to Andrés Muñoz-Jaramillo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muñoz-Jaramillo, A., Vaquero, J.M. Visualization of the challenges and limitations of the long-term sunspot number record. Nat Astron 3, 205–211 (2019). https://doi.org/10.1038/s41550-018-0638-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0638-2

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing