Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Extended main sequence turn-off originating from a broad range of stellar rotational velocities

Abstract

Star clusters have long been considered to comprise a simple stellar population, but this paradigm is being challenged, since in addition to multiple populations in Galactic globular clusters1, a number of younger star clusters exhibit a significant colour spread at the main sequence turn-off2,3,4,5,6,7,8,9. A sequential evolution of multiple generations of stars formed over 100–200 Myr is a natural explanation of this colour spread10. Another approach to explain this feature is to introduce the effect of stellar rotation11. However, its effectiveness has not yet been proven due to the lack of direct measurements of rotational velocities. Here, we report the distribution of projected rotational velocities (Veqsin i) of stars in the Galactic open cluster M11, measured by Fourier transform analysis. Cluster members display a broad Veqsin i distribution, and fast rotators, including Be stars, have redder colours than slow rotators. Monte Carlo simulations infer that cluster members have highly aligned spin axes and a broad distribution of equatorial velocities biased towards high velocities. Our synthetic cluster simulation further demonstrates how stellar rotation affects the colours of cluster members, suggesting that the colour spread observed in populous clusters can be understood in the context of stellar evolution without introducing multiple stellar populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CMDs of the Galactic open cluster M11.
Fig. 2: Correlation between Veqsin i and U − V colours.
Fig. 3: Cumulative distribution of Veqsin i from observations and simulations.
Fig. 4: Comparison of M11 and a synthetic cluster (single population).

Similar content being viewed by others

Data availability

In this paper, we use publicly available data: photometry from ref. 16, evolutionary tracks from the Geneva Stellar Evolution group (ref. 25; https://www.unige.ch/sciences/astro/evolution/en/?lang=en), astrometry from Gaia Data Release 2 (https://www.cosmos.esa.int/gaia) and spectra from the Gaia–ESO Survey (https://www.gaia-eso.eu/data-products/public-data-releases). New MMT Hα spectra (shown in Supplementary Fig. 1) are available for download at http://hdl.handle.net/2268/228255. The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bastian, N. & Lardo, C. Multiple stellar populations in globular clusters. Annu. Rev. Astron. Astrophys. 56, 83–136 (2018).

    Article  ADS  Google Scholar 

  2. Mackey, A. D. & Nielsen, P. B. A double main-sequence turn-off in the rich star cluster NGC 1846 in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 379, 151–158 (2007).

    Article  ADS  Google Scholar 

  3. Goudfrooij, P. et al. Population parameters of intermediate-age star clusters in the Large Magellanic Cloud. II. New insights from extended main-sequence turnoff in seven star clusters. Astrophys. J. 737, 3 (2011).

    Article  ADS  Google Scholar 

  4. Girardi, L. et al. An extended main-sequence turn-off in the Small Magellanic Cloud star cluster NGC 411. Mon. Not. R. Astron. Soc. 431, 3501–3509 (2013).

    Article  ADS  Google Scholar 

  5. Li, C., de Grijs, R. & Deng, L. Not-so-simple stellar populations in the intermediate-age Large Magellanic Cloud star clusters NGC 1831 and NGC 1868. Astrophys. J. 784, 157 (2014).

    Article  ADS  Google Scholar 

  6. Li, C., de Grijs, R. & Deng, L. The exclusion of a significant range of ages in a massive star cluster. Nature 516, 367–369 (2014).

    Article  ADS  Google Scholar 

  7. Milone, A. P. et al. Multiple stellar populations in Magellanic Cloud clusters—III. The first evidence of an extended main sequence turn-off in a young cluster: NGC 1856. Mon. Not. R. Astron. Soc. 450, 3750–3764 (2015).

    Article  ADS  Google Scholar 

  8. Eggen, O. J. The age range of Hyades stars. Astron. J. 116, 284–292 (1998).

    Article  ADS  Google Scholar 

  9. Brandt, T. D. & Huang, C. X. The age and age spread of the Praesepe and Hyades clusters: a consistent, ~800 Myr picture from rotating stellar models. Astrophys. J. 807, 24 (2015).

    Article  ADS  Google Scholar 

  10. Goudfrooij, P. et al. Population parameters of intermediate-age star clusters in the Large Magellanic Cloud. I. NGC 1846 and its wide main-sequence turnoff. Astron. J. 137, 4988–5002 (2009).

    Article  ADS  Google Scholar 

  11. Bastian, N. & de Mink, S. E. The effect of stellar rotation on colour–magnitude diagrams: on the apparent presence of multiple populations in intermediate age stellar clusters. Mon. Not. R. Astron. Soc. 398, L11–L15 (2009).

    Article  ADS  Google Scholar 

  12. Turner, J. L. Extreme star formation. Astrophys. Space Sci. Proc. 10, 215–246 (2009).

    Article  ADS  Google Scholar 

  13. Conroy, C. & Spergel, D. N. On the formation of multiple stellar populations in globular clusters. Astrophys. J. 726, 36 (2011).

    Article  ADS  Google Scholar 

  14. Pancino, E. et al. Chemical abundance analysis of the open clusters Cr 110, NGC 2099 (M 37), NGC 2420, NGC 7789, and M 67 (NGC 2682). Astron. Astrophys. 511, A56 (2010).

    Article  Google Scholar 

  15. Reddy, A. B. S., Giridhar, S. & Lambert, D. L. Comprehensive abundance analysis of red giants in the open clusters NGC 2527, 2682, 2482, 2539, 2335, 2251 and 2266. Mon. Not. R. Astron. Soc. 431, 3338–3348 (2013).

    Article  ADS  Google Scholar 

  16. Sung, H. et al. UBVI CCD photometry of M11—II. New photometry and surface density profiles. Mon. Not. R. Astron. Soc. 310, 982–1001 (1999).

    Article  ADS  Google Scholar 

  17. Cantat-Gaudin, T. et al. The Gaia–ESO Survey: stellar content and elemental abundances in the massive cluster NGC 6705. Astron. Astrophys. 569, A17 (2014).

    Article  Google Scholar 

  18. Magrini, L. et al. The Gaia–ESO Survey: abundance ratios in the inner-disk open clusters Trumpler 20, NGC 4815, NGC 6705. Astron. Astrophys. 563, A44 (2014).

    Article  Google Scholar 

  19. Tautvaišienė, G. et al. The Gaia–ESO survey: CNO abundances in the open clusters Trumpler 20, NGC 4815, and NGC 6705. Astron. Astrophys. 573, A55 (2015).

    Article  Google Scholar 

  20. Gilmore, G. et al. The Gaia–ESO public spectroscopic survey. The Messenger 147, 25–31 (2012).

    ADS  Google Scholar 

  21. Randich, S. et al. The Gaia–ESO large public spectroscopic survey. The Messenger 514, 47–49 (2013).

    ADS  Google Scholar 

  22. Gray, D. F. in The Observation and Analysis of Stellar Photospheres 3rd edn 458–504 (Cambridge Univ. Press, New York, 2005).

  23. Milone, A. P. et al. Multiple stellar populations in Magellanic Cloud clusters—VI. A survey of multiple sequences and Be stars in young clusters. Mon. Not. R. Astron. Soc. 477, 2640–2663 (2018).

    Article  ADS  Google Scholar 

  24. Dupree, A. K. et al. NGC 1866: first spectroscopic detection of fast-rotating stars in a young LMC cluster. Astrophys. J. Lett. 846, L1 (2017).

    Article  ADS  Google Scholar 

  25. Georgy, C. et al. Populations of rotating stars I. Models from 1.7 to 15 M at z = 0.014, 0.006, and 0.002 with Ω/Ωcri between 0 and 1. Astron. Astrophys. 553, A24 (2013).

    Article  Google Scholar 

  26. Corsaro, E. et al. Spin alignment of stars in old open clusters. Nat. Astron. 1, 0064 (2017).

    Article  ADS  Google Scholar 

  27. Guetter, H. H. & Vrba, F. J. Reddening and polarimetric studies toward IC 1805. Astron. J. 98, 611–746 (1989).

    Article  ADS  Google Scholar 

  28. Kamann, S. et al. Cluster kinematics and stellar rotation in NGC 419 with MUSE and adaptive optics. Mon. Not. R. Astron. Soc. 480, 1689–1695 (2018).

    Article  ADS  Google Scholar 

  29. Bastian, N. et al. Extended main sequence turnoffs in open clusters as seen by Gaia: I. NGC 2818 and the role of stellar rotation. Mon. Not. R. Astron. Soc. 480, 3739–3746 (2018).

    Article  ADS  Google Scholar 

  30. Marino, A. F. et al. Discovery of extended main sequence turn offs in Galactic open clusters. Astrophys. J. Lett. 863, L33 (2018).

    Article  ADS  Google Scholar 

  31. McNamara, B. J., Pratt, N. M. & Sanders, W. L. Membership in the open cluster M11. Astron. Astrophys. Sup. 27, 117–143 (1977).

    ADS  Google Scholar 

  32. Su, C.-G., Zhao, J.-L. & Tian, K.-P. Membership determination of stars using proper motions in the region of the open cluster M 11. Astron. Astrophys. Sup. 128, 255–264 (1998).

    Article  ADS  Google Scholar 

  33. Gaia Collaboration et al. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Article  Google Scholar 

  34. Gaia Collaboration et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Article  Google Scholar 

  35. Szentgyorgyi, A. et al. Hectochelle: a multiobject optical echelle spectrograph for the MMT. Publ. Astron. Soc. Pac. 123, 1188–1209 (2011).

    Article  ADS  Google Scholar 

  36. Lim, B. et al. A constraint on the formation timescale of the young open cluster NGC 2264: lithium abundance of pre-main sequence stars. Astrophys. J. 831, 116 (2016).

    Article  ADS  Google Scholar 

  37. Lim, B. et al. Kinematic evidence for feedback-driven star formation in NGC 1893. Mon. Not. R. Astron. Soc. 477, 1993–2003 (2018).

    Article  ADS  Google Scholar 

  38. Pasquini, L. et al. Installation and commissioning of FLAMES, the VLT multifibre facility. The Messenger 110, 1–9 (2002).

    ADS  Google Scholar 

  39. Dekker, H. et al. Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory. In Proc. SPIE 4008: Optical and IR Telescope Instrumentation and Detectors 534–545 (2000).

  40. Brown, A. G. A. & Verschueren, W. High S/N echelle spectroscopy in young stellar groups II. Rotational velocities of early-type stars in SCO OB2. Astron. Astrophys. 319, 811–838 (1997).

    ADS  Google Scholar 

  41. Royer, F., Zorec, J. & Gómez, A. E. Rotational velocities of A-type stars III. Velocity distributions. Astron. Astrophys. 463, 671–682 (2007).

    Article  ADS  Google Scholar 

  42. Royer, F., Gerbaldi, M., Faraggiana, R. & Gómez, A. E. Rotational velocities of A-type stars I. Measurement of v sin i in the Southern Hemisphere. Astron. Astrophys. 381, 105–121 (2002).

    Article  ADS  Google Scholar 

  43. Al-Naimiy, H. M. Linearized limb-darkening coefficients for use in analysis of eclipsing binary light curves. Astrophys. Space Sci. 53, 181–192 (1978).

    Article  ADS  Google Scholar 

  44. Castelli, F. & Kurucz, R. L. New grids of ATLAS9 model atmospheres. Preprint at https://arxiv.org/abs/astro-ph/0405087 (2004).

  45. Gray, D. Precise rotation rates for five slowly rotating A stars. Astron. J. 147, 81 (2014).

    Article  ADS  Google Scholar 

  46. Kovacs, G. Signature of non-isotropic distribution of stellar rotation inclination angles in the Praesepe cluster. Astron. Astrophys. 612, L2 (2018).

    Article  ADS  Google Scholar 

  47. Georgy, C. et al. Populations of rotating stars III. SYCLIST, the new Geneva population synthesis code. Astron. Astrophys. 566, A21 (2014).

    Article  Google Scholar 

  48. Worthey, G. & Lee, H.-C. An empirical UBV RI JHK color–temperature calibration for stars. Astrophys. J. Suppl. Ser. 193, 1 (2011).

    Article  ADS  Google Scholar 

  49. Mermilliod, J.-C. Comparative studies of young open clusters. III—empirical isochronous curves and the zero age main sequence. Astron. Astrophys. 97, 235–244 (1981).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Bessell, S. Ekström and D. Gray for helpful comments, as well as P. Berlind, M. Calkins, C. Ly, S. Kattner and N. Caldwell for assisting with the Hectochelle observations. B.L. is grateful for assistance from S. Kim in running the simulation codes. This research was supported by the Basic Science Research Program through the National Research Foundation (NRF) of Korea (grant number NRF-2017R1A6A3A03006413), and the BK21 plus programme through the NRF funded by the Ministry of Education of Korea. This uses data obtained under the K-GMT Science Program (PID: MMT-2017A-1) funded through the K-GMT Project operated by the Korea Astronomy and Space Science Institute (KASI), and from the European Space Agency mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the Gaia Data Processing and Analysis Consortium has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. Y.N. (an FNRS research associate) and G.R. acknowledge support from the FNRS and the PRODEX contract, Belgium. H.S. acknowledges support from the NRF of Korea (grant number NRF-2015R1D1A1A01058444). N.H. acknowledges support from the Large Optical Telescope Project operated by KASI. B.-G.P. acknowledges support from the K-GMT Project operated by KASI.

Author information

Authors and Affiliations

Authors

Contributions

B.L. proposed the project, analysed the data and wrote the manuscript. G.R. computed the gravity-darkening effects. Y.N. developed the Fourier transform code. H.S. was involved with project planning. All co-authors participated in discussions and contributed to improving the manuscript.

Corresponding author

Correspondence to Beomdu Lim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Supplementary references, Supplementary Figures 1–12, Supplementary Tables 1–4

Supplementary Data 1

Machine-readable version of Supplementary Table 1

Supplementary Data 2

Machine-readable version of Supplementary Table 4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, B., Rauw, G., Nazé, Y. et al. Extended main sequence turn-off originating from a broad range of stellar rotational velocities. Nat Astron 3, 76–81 (2019). https://doi.org/10.1038/s41550-018-0619-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0619-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing