Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anisotropic winds in a Wolf–Rayet binary identify a potential gamma-ray burst progenitor

Abstract

The massive evolved Wolf–Rayet stars sometimes occur in colliding-wind binary systems in which dust plumes are formed as a result of the collision of stellar winds1. These structures are known to encode the parameters of the binary orbit and winds2,3,4. Here we report observations of a previously undiscovered Wolf–Rayet system, 2XMM J160050.7–514245, with a spectroscopically determined wind speed of ~3,400 km s−1. In the thermal infrared, the system is adorned with a prominent ~12″ spiral dust plume, revealed by proper motion studies to be expanding at only ~570 km s−1. As the dust and gas appear to be coeval, these observations are inconsistent with existing models of the dynamics of such colliding-wind systems5,6,7. We propose that this contradiction can be resolved if the system is capable of launching extremely anisotropic winds. Near-critical stellar rotation is known to drive such winds8,9, suggesting that this Wolf–Rayet system may be a Galactic progenitor system for long-duration gamma-ray bursts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: VISIR 8.9 μm image of Apep taken on 2016 August 13, displaying the exotic dust pattern being sculpted by the system.
Fig. 2: SINFONI J-band and H+K-band spectra for the Central Engine at the centre of the NACO image shown in the inset of Fig. 1.
Fig. 3: The 1.083 μm He i line from the continuum-corrected IRIS2 long-slit Js-band spectrum of Apep.
Fig. 4: A geometric model of the dust plume of Apep.

Data availability

All data included in this manuscript are now available in the public domain. The VISIR, NACO and SINFONI data are available through the ESO archive. The ATCA data are available through the Australia Telescope Online Archive (ATOA). The IRIS2 data are available through the AAT Data Archive. The X-ray data are available through the XMM-Newton Science Archive (XSA) and Chandra Data Archive.

References

  1. Crowther, P. A. Physical properties of Wolf-Rayet stars. Annu. Rev. Astron. Astrophys. 45, 177–219 (2007).

    Article  ADS  Google Scholar 

  2. Tuthill, P. G., Monnier, J. D. & Danchi, W. C. A dusty pinwheel nebula around the massive star WR104. Nature 398, 487–489 (1999).

    Article  ADS  Google Scholar 

  3. Monnier, J. D., Tuthill, P. G. & Danchi, W. C. Pinwheel nebula around WR 98A. Astrophys. J. Lett. 525, L97–L100 (1999).

    Article  ADS  Google Scholar 

  4. Tuthill, P. G. et al. The prototype colliding-wind pinwheel WR 104. Astrophys. J. 675, 698–710 (2008).

    Article  ADS  Google Scholar 

  5. Hurley, J. R., Tout, C. A. & Pols, O. R. Evolution of binary stars and the effect of tides on binary populations. Mon. Not. R. Astron. Soc. 329, 897–928 (2002).

    Article  ADS  Google Scholar 

  6. Mauerhan, J. et al. Multiwavelength observations of NaSt1 (WR 122): equatorial mass loss and X-rays from an interacting Wolf-Rayet binary. Mon. Not. R. Astron. Soc. 450, 2551–2563 (2015).

    Article  ADS  Google Scholar 

  7. Lau, R. M. et al. Stagnant shells in the vicinity of the dusty Wolf-Rayet-OB binary WR 112. Astrophys. J. Lett. 835, L31 (2017).

    Article  ADS  Google Scholar 

  8. Aerts, C., Lamers, H. J. G. L. M. & Molenberghs, G. Maximum mass-loss rates of line-driven winds of massive stars: the effect of rotation and an application to ηCarinae. Astron. Astrophys. 418, 639–648 (2004).

    Article  ADS  Google Scholar 

  9. de Mink, S. E., Langer, N., Izzard, R. G., Sana, H. & de Koter, A. The rotation rates of massive stars: the role of binary interaction through tides, mass transfer, and mergers. Astrophys. J. 764, 166 (2013).

    Article  ADS  Google Scholar 

  10. Williams, P. M. et al. Multi-frequency variations of the Wolf-Rayet system HD 193793. I—Infrared, X-ray and radio observations. Mon. Not. R. Astron. Soc. 243, 662–684 (1990).

    ADS  Google Scholar 

  11. Monnier, J. D., Tuthill, P. G. & Danchi, W. C. Proper motions of new dust in the colliding wind binary WR 140. Astrophys. J. Lett. 567, L137–L140 (2002).

    Article  ADS  Google Scholar 

  12. Williams, P. M. et al. Orbitally modulated dust formation by the WC7+O5 colliding-wind binary WR140. Mon. Not. R. Astron. Soc. 395, 1749–1767 (2009).

    Article  ADS  Google Scholar 

  13. Woosley, S. E. & Heger, A. The progenitor stars of gamma-ray bursts. Astrophys. J. 637, 914–921 (2006).

    Article  ADS  Google Scholar 

  14. Detmers, R. G., Langer, N., Podsiadlowski, P. & Izzard, R. G. Gamma-ray bursts from tidally spun-up Wolf-Rayet stars? Astron. Astrophys. 484, 831–839 (2008).

    Article  ADS  Google Scholar 

  15. Meynet, G. & Maeder, A. Stellar evolution with rotation. XI. Wolf-Rayet star populations at different metallicities. Astron. Astrophys. 429, 581–598 (2005).

    Article  ADS  Google Scholar 

  16. Marchant, P., Langer, N., Podsiadlowski, P., Tauris, T. M. & Moriya, T. J. A new route towards merging massive black holes. Astron. Astrophys. 588, A50 (2016).

    Article  ADS  Google Scholar 

  17. Fryer, C. L. & Heger, A. Binary merger progenitors for gamma-ray bursts and hypernovae. Astrophys. J. 623, 302–313 (2005).

    Article  ADS  Google Scholar 

  18. Shenar, T., Hamann, W.-R. & Todt, H. The impact of rotation on the line profiles of Wolf-Rayet stars. Astron. Astrophys. 562, A118 (2014).

    Article  ADS  Google Scholar 

  19. Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).

    Article  ADS  Google Scholar 

  20. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    Article  ADS  Google Scholar 

  21. Williams, P. M., van der Hucht, K. A., van der Woerd, H., Wamsteker, W. M. & Geballe, T. R. in Instabilities in Luminous Early Type Stars Vol. 136 of Astrophysics and Space Science Library (eds Lamers, H. J. G. L. M. & De Loore, C. W. H.) 221–226 (D. Reidel, Dordrecht, 1987).

  22. Smith, L. F. A revised spectral classification system and a new catalogue for galactic Wolf-Rayet stars. Mon. Not. R. Astron. Soc. 138, 109–121 (1968).

    Article  ADS  Google Scholar 

  23. Crowther, P. A., Hadfield, L. J., Clark, J. S., Negueruela, I. & Vacca, W. D. A census of the Wolf-Rayet content in Westerlund 1 from near-infrared imaging and spectroscopy. Mon. Not. R. Astron. Soc. 372, 1407–1424 (2006).

    Article  ADS  Google Scholar 

  24. Rosslowe, C. K. & Crowther, P. A. A deep near-infrared spectroscopic survey of the Scutum-Crux arm for Wolf-Rayet stars. Mon. Not. R. Astron. Soc. 473, 2853–2870 (2018).

    ADS  Google Scholar 

  25. Cantó, J., Raga, A. C. & Wilkin, F. P. Exact, algebraic solutions of the thin-shell two-wind interaction problem. Astrophys. J. 469, 729 (1996).

    Article  ADS  Google Scholar 

  26. Marchenko, S. V. et al. The unusual 2001 periastron passage in the ‘clockwork’ colliding-wind binary WR 140. Astrophys. J. 596, 1295 (2003).

    Article  ADS  Google Scholar 

  27. Pollock, A. M. T., Crowther, P. A., Tehrani, K., Broos, P. S. & Townsley, L. K. The 155-day X-ray cycle of the very massive Wolf–Rayet star Melnick 34 in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. 474, 3228–3236 (2018).

    Article  ADS  Google Scholar 

  28. De Becker, M. & Raucq, F. Catalogue of particle-accelerating colliding-wind binaries. Astron. Astrophys. 558, A28 (2013).

    Article  Google Scholar 

  29. Parkin, E. R., Pittard, J. M., Hoare, M. G., Wright, N. J. & Drake, J. J. The interactions of winds from massive young stellar objects: X-ray emission, dynamics and cavity evolution. Mon. Not. R. Astron. Soc. 400, 629–645 (2009).

    Article  ADS  Google Scholar 

  30. Groh, J. H., Hillier, D. J. & Damineli, A. AG Carinae: a luminous blue variable with a high rotational velocity. Astrophys. J. Lett. 638, L33–L36 (2006).

    Article  ADS  Google Scholar 

  31. Groh, J. H., Oliveira, A. S. & Steiner, J. E. The qWR star HD 45166. II. Fundamental stellar parameters and evidence of a latitude-dependent wind. Astron. Astrophys. 485, 245–256 (2008).

    Article  ADS  Google Scholar 

  32. Woosley, S. E. Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 405, 273–277 (1993).

    Article  ADS  Google Scholar 

  33. Gräfener, G., Vink, J. S., Harries, T. J. & Langer, N. Rotating Wolf-Rayet stars in a post RSG/LBV phase. An evolutionary channel towards long-duration GRBs? Astron. Astrophys. 547, A83 (2012).

    Article  ADS  Google Scholar 

  34. Lenzen, R. et al. NAOS-CONICA first on sky results in a variety of observing modes. In Proc. SPIE Instrument Design Performance Optical/Infrared Ground-based Telescopes Vol. 4841 (eds Iye, M. & Moorwood, A. F. M.) 944–952 (SPIE, 2003).

  35. Rousset, G. et al. NAOS, the first AO system of the VLT: on-sky performance. In Proc. SPIE Adaptive Optical System Technologies II Vol. 4839 (eds Wizinowich, P. L. & Bonaccini, D.) 140–149 (SPIE, 2003).

  36. Lagage, P. O. et al. Successful commissioning of VISIR: the mid-infrared VLT instrument. The Messenger 117, 12–16 (2004).

    ADS  Google Scholar 

  37. Eisenhauer, F. et al. SINFONI—integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT. In Proc. SPIE Instrument Design Performance Optical/Infrared Ground-based Telescopes Vol. 4841 (eds Iye, M. & Moorwood, A. F. M.) 1548–1561 (SPIE, 2003).

  38. Davies, R. I. A method to remove residual OH emission from near-infrared spectra. Mon. Not. R. Astron. Soc. 375, 1099–1105 (2007).

    Article  ADS  Google Scholar 

  39. Tinney, C. G. et al. IRIS2: a working infrared multi-object spectrograph and camera. In Proc. SPIE Ground-based Instrumentation Astron. Vol. 5492 (eds Moorwood, A. F. M. & Iye, M.) 998–1009 (SPIE, 2004).

  40. Eenens, P. R. J. & Williams, P. M. Terminal velocities of Wolf-Rayet winds from infrared He I lines. Mon. Not. R. Astron. Soc. 269, 1082 (1994).

    Article  ADS  Google Scholar 

  41. Wilson, W. E. et al. The Australia Telescope Compact Array Broad-band Backend: description and first results. Mon. Not. R. Astron. Soc. 416, 832–856 (2011).

    Article  ADS  Google Scholar 

  42. Sault, R. J., Teuben, P. J. & Wright, M. C. H. A Retrospective view of MIRIAD. Astronomical Data Analysis Software Systems IV Vol. 77 of Astron. Soc. Pacific Conf. Series (eds Shaw, R. A., Payne, H. E. & Hayes, J. J. E.) 433 (1995).

  43. Callingham, J. R., Farrell, S. A., Gaensler, B. M., Lewis, G. F. & Middleton, M. J. The X-ray transient 2XMMi J003833.3+402133: a candidate magnetar at high galactic latitude. Astrophys. J. 757, 169 (2012).

    Article  ADS  Google Scholar 

  44. Arnaud, K. A. XSPEC: the first ten years. Astronomical Data Analysis Software and Systems V, Vol. 101 of Astron. Soc. Pacific Conf. Series (eds Jacoby, G. H. & Barnes, J.) 17 (1996).

  45. Pérez, F. & Granger, B. E. IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9, 21–29 (2007).

    Article  Google Scholar 

  46. Jones, E., Oliphant, T. & Peterson, P. SciPy: open source scientific tools for Python (2001); http://www.scipy.org/

  47. Hunter, J. D. Matplotlib: A 2D graphics environment. Comp. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  48. The Astropy Collaboration. Astropy: a community Python package for astronomy. Astron. Astrophys. 558, A33 (2013).

    Article  Google Scholar 

  49. Van Der Walt, S., Colbert, S. C. & Varoquaux, G. The NumPy array: a structure for efficient numerical computation. Comp. Sci. Eng. 13, 22–30 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

J.R.C. thanks B. Gaensler and S. Farrell for conceiving the radio and X-ray survey that led to the discovery of Apep. We also thank N. Smith, K. Valenta and O. de Marco for discussions in the early stages of this study and A. Cheetham for help in constructing the NACO and VISIR observing schedules. We thank R. Lau for reviewing our manuscript and providing insightful comments that lead to important improvements in the manuscript. P.G.T. and B.J.S.P. are grateful for funding from the Breakthrough Prize Foundation. This work was performed in part under contract with the Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute. B.J.S.P. is a NASA Sagan Fellow. P.M.W. is grateful to the Institute for Astronomy for continued hospitality and access to the facilities of the Royal Observatory, Edinburgh. We acknowledge the Gadigal clan of the Eora nation, the traditional owners of the land on which the University of Sydney is built, and we pay our respects to their knowledge, and their elders past, present and future. We also thank Y. Han and J. Prenzler. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and NASA’s Astrophysics Data System. The results presented in this Letter are based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 097.C-0679(A), 097.C-0679(B), 299.C-5032(A) and 299.C-5032(B). The Australia Telescope Compact Array is part of the Australia Telescope National Facility that is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. The scientific results reported in this article are based in part on data acquired through the Australian Astronomical Observatory, on data obtained from the Chandra Data Archive, and observations obtained with XMM-Newton, an European Space Agency (ESA) science mission with instruments and contributions directly funded by ESA Member States and NASA.

Author information

Authors and Affiliations

Authors

Contributions

J.R.C. conducted the survey that identified Apep, wrote the initial draft of the manuscript, conducted and reduced the ATCA observations, and reduced the IRIS2, SINFONI, XMM-Newton and Chandra observations. P.G.T. measured the proper motion of the dust spiral, led the discussion and interpretation of the object, led the VISIR and NACO observing proposals, and contributed significantly to the writing and editing of the manuscript. B.J.S.P. contributed significantly to the understanding and discussion of the object, provided editing and text for the manuscript, and analysed the Gaia and NACO data. P.M.W. interpreted the infrared spectrum, provided the text for the manuscript, produced the infrared/optical photometric SED, measured the equivalent widths of the emission lines, and contributed to the discussion about the object. P.A.C. helped interpret the infrared spectra and critiqued the manuscript. M.E. and B.N. reduced the VISIR and NACO data. L.K.-C. conducted the IRIS2 observation.

Corresponding author

Correspondence to J. R. Callingham.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Supplementary Figures 1–5, Supplementary Tables 1–4, Supplementary references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Callingham, J.R., Tuthill, P.G., Pope, B.J.S. et al. Anisotropic winds in a Wolf–Rayet binary identify a potential gamma-ray burst progenitor. Nat Astron 3, 82–87 (2019). https://doi.org/10.1038/s41550-018-0617-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0617-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing