Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A power-law decay evolution scenario for polluted single white dwarfs

An Author Correction to this article was published on 19 November 2018

This article has been updated


Planetary systems can survive stellar evolution, as is clear from the atmospheric metal pollution and circumstellar dusty disks of single white dwarfs1,2. Recent observations show that 1−4% of single white dwarfs are accompanied by dusty disks3,4,5,6, while the occurrence rate of metal pollution is about 25–50%1,7,8. Dusty disks and metal pollution have been associated with accretion of remanent planetary systems around white dwarfs1,9, yet the relationship between these two phenomena is still unclear. Here, we suggest an evolutionary scenario to link the dusty disk and metal pollution. By analysing a sample of metal-polluted white dwarfs, we find that the mass accretion rate onto the white dwarf generally follows a broken power-law decay, which matches well with the theoretical prediction, assuming that dust accretion is primarily driven by Poynting–Robertson drag10 and the dust source is primarily delivered via dynamically falling asteroids perturbed by a Jovian planet11,12. The presence of disks is mainly at the early stage (tcool ~ 0.1−0.7 Gyr) of the whole process of metal pollution, which is detectable until ~8 Gyr, naturally explaining the fraction (~2–16%) of metal-polluted white dwarfs with dusty disks. The success of this scenario also implies that the configuration of an asteroid belt with an outer gas giant might be common around stars of several solar masses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Power-law relationship derived from the observational data.
Fig. 2: A power-law decay evolution scenario for polluted white dwarfs.
Fig. 3: An evolution diagram for the tidally disrupted asteroid model.

Data availability

The data that support the findings of this study are available on request from the corresponding authors.

Change history

  • 19 November 2018

    The version of this Letter originally published had the following errors in the reference list, all of which have now been corrected.


  1. 1.

    Koester, D., Gänsicke, B. T. & Farihi, J. The frequency of planetary debris around young white dwarfs. Astron. Astrophys. 566, A34 (2014).

    ADS  Article  Google Scholar 

  2. 2.

    Farihi, J. Circumstellar debris and pollution at white dwarf stars. New Astron. Rev. 71, 9–34 (2016).

    ADS  Article  Google Scholar 

  3. 3.

    Mullally, F. et al. A Spitzer white dwarf infrared survey. Astrophys. J. Suppl. 171, 206–218 (2007).

    ADS  Article  Google Scholar 

  4. 4.

    Farihi, J., Jura, M. & Zuckerman, B. Infrared signatures of disrupted minor planets at white dwarfs. Astrophys. J. 694, 805–819 (2009).

    ADS  Article  Google Scholar 

  5. 5.

    Debes, J. H. et al. The WIRED Survey II: infrared excesses in the SDSS DR7 White Dwarf Catalog. Astrophys. J. Suppl. 197, 38 (2011).

    ADS  Article  Google Scholar 

  6. 6.

    Barber, S. D., Kilic, M., Brown, W. R. & Gianninas, A. Dusty WDs in the WISE All Sky Survey ∩ SDSS. Astrophys. J. 786, 77 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    Zuckerman, B., Koester, D., Reid, I. N. & Hünsh, M. Metal lines in DA white dwarfs. Astrophys. J. 596, 477–495 (2003).

    ADS  Article  Google Scholar 

  8. 8.

    Zuckerman, B., Melis, C., Klein, B., Koester, D. & Jura, M. Ancient planetary systems are orbiting a large fraction of white dwarf stars. Astrophys. J. 722, 725–736 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    Bonsor, A., Farihi, J., Wyatt, M. C. & van Lieshout, R. Infrared observations of white dwarfs and the implications for the accretion of dusty planetary material. Mon. Not. R. Astron. Soc. 468, 154–164 (2017).

    ADS  Article  Google Scholar 

  10. 10.

    Rafikov, R. R. Metal accretion onto white dwarfs caused by Poynting–Robertson drag on their debris disks. Astrophys. J. 732, L3 (2011).

    ADS  Article  Google Scholar 

  11. 11.

    Jura, M. A tidally disrupted asteroid around the white dwarf G29-38. Astrophys. J. 584, L91–L94 (2003).

    ADS  Article  Google Scholar 

  12. 12.

    Frewen, S. F. N. & Hansen, B. M. S. Eccentric planets and stellar evolution as a cause of polluted white dwarfs. Mon. Not. R. Astron. Soc. 439, 2442–2458 (2014).

    ADS  Article  Google Scholar 

  13. 13.

    Dufour, P. et al. The Montreal White Dwarf Database: a tool for the community. In 20th European White Dwarf Workshop 509, 3 (2017).

  14. 14.

    Rafikov, R. R. Runaway accretion of metals from compact discs of debris on to white dwarfs. Mon. Not. R. Astron. Soc. 416, L55–L59 (2011).

    ADS  Article  Google Scholar 

  15. 15.

    Bonsor, A., Mustill, A. J. & Wyatt, M. C. Dynamical effects of stellar mass-loss on a Kuiper-like belt. Mon. Not. R. Astron. Soc. 414, 930–939 (2011).

    ADS  Article  Google Scholar 

  16. 16.

    Bonsor, A. S. & Veras, D. A wide binary trigger for white dwarf pollution. Mon. Not. R. Astron. Soc. 454, 53–63 (2015).

    ADS  Article  Google Scholar 

  17. 17.

    Hamers, A. S., Perets, H. B. & Portegies Zwart, S. F. A triple origin for the lack of tight coplanar circumbinary planets around short-period binaries. Mon. Not. R. Astron. Soc. 455, 3180–3200 (2016).

    ADS  Article  Google Scholar 

  18. 18.

    Payne, M. J., Veras, D., Holman, M. J. & Gänsicke, B. T. Liberating exomoons in white dwarf planetary systems. Mon. Not. R. Astron. Soc. 457, 217–231 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Lai, Y.-C., Grebogi, C., Blümel, R. & Ding, M. Algebraic decay and phase-space metamorphoses in microwave ionization of hydrogen Rydberg atoms. Phys. Rev. A 45, 8284–8287 (1992).

    ADS  Article  Google Scholar 

  20. 20.

    Liu, J. & Sun, Y. S. Chaotic motions of comets in near-parabolic orbits: mapping approaches. Celest. Mech. Dynam. Astron. 60, 3–28 (1994).

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Zhou, J. L., Sun, Y. S., Zhen, J. Q. & Valtonen, M. J. The transfer of comets from near-parabolic to short-period orbits: map approach. Astron. Astrophys. 364, 887–893 (2000).

    ADS  Google Scholar 

  22. 22.

    Zhou, J. L., Sun, Y. S. & Zhou, L. Y. Evidence for Lévy random walks in the evolution of comets from the Oort Cloud. Celest. Mech. Dynam. Astron. 84, 409–427 (2002).

    ADS  Article  Google Scholar 

  23. 23.

    Wright, J. T. et al. The Exoplanet Orbit Database. Publ. Astron. Soc. Pacif. 123, 412–422 (2011).

    ADS  Article  Google Scholar 

  24. 24.

    Chen, C. H. & Jura, M. A possible massive asteroid belt around Leporis. Astrophys. J. 560, L171–L174 (2001).

    ADS  Article  Google Scholar 

  25. 25.

    Farihi, J., Hippel, T. V. & Pringle, J. E. Magnetospherically-trapped dust and a possible model for the unusual transits at WD 1145+017. Mon. Not. R. Astron. Soc. 471, L145–L149 (2017).

    ADS  Article  Google Scholar 

  26. 26.

    Debes, J. H. & Sigurdsson, S. Are there unstable planetary systems around white dwarfs? Astrophys. J. 572, 556–565 (2002).

    ADS  Article  Google Scholar 

  27. 27.

    Veras, D., Mustill, A. J., Bonsor, A. & Wyatt, M. C. Simulations of two-planet systems through all phases of stellar evolution: implications for the instability boundary and white dwarf pollution. Mon. Not. R. Astron. Soc. 431, 1686–1708 (2013).

    ADS  Article  Google Scholar 

  28. 28.

    Bochkarev, K. V. & Rafikov, R. R. Global modeling of radiatively driven accretion of metals from compact debris disks onto white dwarfs. Astrophys. J. 741, 36 (2011).

    ADS  Article  Google Scholar 

  29. 29.

    Farihi, J., Parsons, S. G. & Gänsicke, B. T. A circumbinary debris disk in a polluted white dwarf system. Nat. Astron. 1, 0032 (2017).

    ADS  Article  Google Scholar 

  30. 30.

    Hollands, M. A., Koester, D., Alekseev, V., Herbert, E. L. & Gänsicke, B. T. Cool DZ white dwarfs I. Identification and spectral analysis. Mon. Not. R. Astron. Soc. 467, 4970–5000 (2017).

    ADS  Google Scholar 

  31. 31.

    Farihi, J., Jura, M., Lee, J. E. & Zuckerman, B. Strengthening the case for asteroidal accretion: evidence for subtle and diverse disks at white dwarfs. Astrophys. J. 714, 1386–1397 (2010).

    ADS  Article  Google Scholar 

  32. 32.

    Xu, S. & Jura, M. Spitzer observations of white dwarfs: the missing planetary debris around DZ stars. Astrophys. J. 745, 88 (2012).

    ADS  Article  Google Scholar 

  33. 33.

    Girven, J. et al. Constraints on the lifetimes of disks resulting from tidally destroyed rocky planetary bodies. Astrophys. J. 749, 154 (2012).

    ADS  Article  Google Scholar 

  34. 34.

    Bergfors, C., Farihi, J., Dufour, P. & Rocchetto, M. Signs of a faint disc population at polluted white dwarfs. Mon. Not. R. Astron. Soc. 444, 2147–2156 (2014).

    ADS  Article  Google Scholar 

  35. 35.

    Dufour, P. et al. On the spectral evolution of cool, helium-atmosphere white dwarfs: detailed spectroscopic and photometric analysis of DZ stars. Astrophys. J. 663, 1291–1308 (2007).

    ADS  Article  Google Scholar 

  36. 36.

    Limoges, M. M., Bergeron, P. & Lépine, S. Physical properties of the current census of northern white dwarfs within 40 Pc of the Sun. Astrophys. J. Suppl. 219, 19 (2015).

    ADS  Article  Google Scholar 

  37. 37.

    Koester, D. & Kepler, S. O. DB white dwarfs in the Sloan Digital Sky Survey Data Release 10 and 12. Astron. Astrophys. 583, A86 (2015).

    ADS  Article  Google Scholar 

  38. 38.

    Kepler, S. O. et al. New white dwarf stars in the Sloan Digital Sky Survey Data Release 10. Mon. Not. R. Astron. Soc. 446, 4078–4087 (2015).

    ADS  Article  Google Scholar 

  39. 39.

    Kepler, S. O. et al. New white dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 12. Mon. Not. R. Astron. Soc. 455, 3413–3423 (2016).

    ADS  Article  Google Scholar 

  40. 40.

    Kepler, S. O. et al. White dwarf mass distribution in the SDSS. Mon. Not. R. Astron. Soc. 375, 1315–1324 (2007).

    ADS  Article  Google Scholar 

  41. 41.

    Cavanaugh, J. E. Unifying the derivations for the Akaike and corrected Akaike information criteria. Stat. Prob. Lett. 33, 201–208 (1997).

    MathSciNet  Article  Google Scholar 

  42. 42.

    Veras, D., Leinhardt, Z. M., Bonsor, A. & Gänsicke, B. T. Formation of planetary debris discs around white dwarfs I. Tidal disruption of an extremely eccentric asteroid. Mon. Not. R. Astron. Soc. 445, 2244–2255 (2014).

    ADS  Article  Google Scholar 

  43. 43.

    Shapiro, S. L. & Teukolsky, S. A. Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects 663 (Wiley, New York, 1983).

  44. 44.

    Livio, M., Pringle, J. E. & Wood, K. Disks and planets around massive white dwarfs. Astrophys. J. 632, L37–L39 (2005).

    ADS  Article  Google Scholar 

  45. 45.

    Catalán, S., Isern, J., García-Berro, E. & Ribas, I. The initial–final mass relationship of white dwarfs revisited: effect on the luminosity function and mass distribution. Mon. Not. R. Astron. Soc. 387, 1693–1706 (2008).

    ADS  Article  Google Scholar 

  46. 46.

    Veras, D. et al. Full-lifetime simulations of multiple unequal-mass planets across all phases of stellar evolution. Mon. Not. R. Astron. Soc. 458, 3942–3967 (2016).

    ADS  Article  Google Scholar 

  47. 47.

    Mustill, A. J. & Villaver, E. Foretellings of Ragnarök: world-engulfing asymptotic giants and the inheritance of white dwarfs. Astrophys. J. 761, 121 (2012).

    ADS  Article  Google Scholar 

  48. 48.

    Duncan, M. J., Quinn, T. & Tremaine, S. The long-term evolution of orbits in the Solar System: a mapping approach. Icarus 82, 402–418 (1989).

    ADS  Article  Google Scholar 

  49. 49.

    Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).

    ADS  Article  Google Scholar 

  50. 50.

    Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in FORTRAN. The Art of Scientific Computing (Cambridge Univ. Press, New York, 1992).

  51. 51.

    Krasinsky, G. A., Pitjeva, E. V., Vasilyev, M. V. & Yagudina, E. I. Hidden mass in the asteroid belt. Icarus 158, 98–105 (2002).

    ADS  Article  Google Scholar 

  52. 52.

    Debes, J. H., Walsh, K. J. & Stark, C. The link between planetary systems, dusty white dwarfs, and metal-polluted white dwarfs. Astrophys. J. 747, 148 (2012).

    ADS  Article  Google Scholar 

  53. 53.

    Morrison, S. & Malhotra, R. Planetary chaotic zone clearing: destinations and timescales. Astrophys. J. 799, 41 (2015).

    ADS  Article  Google Scholar 

  54. 54.

    Mustill, A. J., Veras, D. & Villaver, E. Long-term evolution of three-planet systems to the post-main sequence and beyond. Mon. Not. R. Astron. Soc. 437, 1404–1419 (2014).

    ADS  Article  Google Scholar 

  55. 55.

    Koester, D. & Wilken, D. The accretion–diffusion scenario for metals in cool white dwarfs. Astron. Astrophys. 453, 1051–1057 (2006).

    ADS  Article  Google Scholar 

  56. 56.

    Dupius, J., Fontaine, G. & Wesemael, F. A study of metal abundance patterns in cool white dwarfs. III—comparison of the predictions of the two-phase accretion model with the observations. Astrophys. J. Suppl. 87, 345–365 (1993).

    ADS  Article  Google Scholar 

Download references


The authors thank S.-Y. Xu and D. Koester for discussions and suggestions. They also thank the MWDD for useful data and evolutionary models of white dwarfs. This research is supported by the National Natural Science Foundation of China (numbers 11333002, 11661161014, 11503009 and 11673011). J.-W. X. acknowledges the Foundation for the Author of National Excellent Doctoral Dissertation of the People’s Republic of China (number 10284201426) and the LAMOST Fellowship. The LAMOST Fellowship is supported by Special Funding for Advanced Users, budgeted and administrated by the Center for Astronomical Mega-Science, Chinese Academy of Sciences.

Author information




J.-L.Z. and D.-C.C. came up with the idea. D.-C.C., J.-W.X. and M.Y. investigated the observation data and pertinent literature. J.-W.X., D.-C.C and H.Z. conducted the data analysis. D.-C.C. and Z.-Y.Y. conducted the simulations and calculations. J.-L.Z., J.-W.X. and D.-C.C. wrote the paper. M.Y., H.Z., E.-S.L. and J.-Y.Y. participated in revision of the paper.

Corresponding authors

Correspondence to Ji-Lin Zhou or Ji-Wei Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10, Supplementary Tables 1–3, Supplementary References 1–32

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, DC., Zhou, JL., Xie, JW. et al. A power-law decay evolution scenario for polluted single white dwarfs. Nat Astron 3, 69–75 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing