Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A decade of fast radio bursts

Abstract

Modern astrophysics is undergoing a revolution. As detector technology has advanced, and astronomers have been able to study the sky with finer temporal detail, a rich diversity of sources that vary on timescales from years down to a few nanoseconds has been found. Among these are fast radio bursts, which exhibit pulses of millisecond duration and anomalously high dispersion compared to Galactic pulsars, first seen a decade ago. Since then, a new research community has been actively working on a variety of experiments and developing models to explain this new phenomenon, and devising ways to use them as astrophysical tools. In this Perspective, I describe how astronomers have reached this point, review the highlights from the first decade of research in this field, give some current breaking news, and look ahead to what might be expected in the next few years.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Waterfall plot showing radio frequency versus time (lower panel) for the original FRB 010724 in the main beam of the telescope.
Fig. 2: Dispersion measure versus Galactic latitude showing pulsars (small dots) and fast radio bursts (larger blobs).
Fig. 3: Peak flux density versus dispersion measure for observed (large stars) and simulated (dots) FRBs.

References

  1. Cordes, J. M., Lazio, T. J. W. & McLaughlin, M. A. The dynamic radio sky. New Astron. Rev. 48, 1459–1472 (2004).

    ADS  Article  Google Scholar 

  2. Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J. & Crawford, F. A bright millisecond radio burst of extragalactic origin. Science 318, 777–780 (2007).

    ADS  Article  Google Scholar 

  3. Petroff, E. et al. FRBCAT: The fast radio burst catalogue. Publ. Astron. Soc. Aus. 33, e045 (2016).

    ADS  Article  Google Scholar 

  4. Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F. & Collins, R. A. Observation of a rapidly pulsating radio source. Nature 217, 709–713 (1968).

    ADS  Article  Google Scholar 

  5. Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The Australia Telescope National Facility pulsar catalogue. Astron. J. 129, 1993–2006 (2005).

    ADS  Article  Google Scholar 

  6. Burns, W. R. & Clark, B. G. Pulsar search techniques. Astron. Astrophys. 2, 280–287 (1969).

    ADS  Google Scholar 

  7. Staelin, D. H., Reifenstein, I. & Edward, C. Pulsating radio sources near the Crab Nebula. Science 162, 1481–1483 (1968).

    ADS  Article  Google Scholar 

  8. Mickaliger, M. B. et al. A giant sample of giant pulses from the Crab pulsar. Astrophys. J. 760, 64 (2012).

    ADS  Article  Google Scholar 

  9. Cordes, J. M., Bhat, N. D. R., Hankins, T. H., McLaughlin, M. A. & Kern, J. The brightest pulses in the Universe: Multifrequency observations of the Crab pulsar’s giant pulses. Astrophys. J. 612, 375–388 (2004).

    ADS  Article  Google Scholar 

  10. Hawking, S. W. Black hole explosions. Nature 248, 30–31 (1974).

    ADS  Article  Google Scholar 

  11. Rees, M. J. A better way of searching for black-hole explosions. Nature 266, 333 (1977).

    ADS  Article  Google Scholar 

  12. Colgate, S. A. Electromagnetic pulse from supernovae. Astrophys. J. 198, 439–445 (1975).

    ADS  Article  Google Scholar 

  13. Phinney, S. & Taylor, J. H. A sensitive search for radio pulses from primordial black holes and distant supernovae. Nature 277, 117–118 (1979).

    ADS  Article  Google Scholar 

  14. Linscott, I. R. & Erkes, J. W. Discovery of millisecond radio bursts from M 87. Astrophys. J. Lett. 236, L109–L113 (1980).

    ADS  Article  Google Scholar 

  15. Taylor, J. H., Backus, P. R. & Damashek, M. No radio pulses from M87. Astrophys. J. Lett. 244, L65–L68 (1981).

    ADS  Article  Google Scholar 

  16. Nice, D. J. Radio pulses along the Galactic Plane. Astrophys. J. 513, 927–932 (1999).

    ADS  Article  Google Scholar 

  17. McLaughlin, M. A. & Cordes, J. M. Searches for giant pulses from extragalactic pulsars. Astrophys. J. 596, 982–996 (2003).

    ADS  Article  Google Scholar 

  18. McLaughlin, M. A. et al. Transient radio bursts from rotating neutron stars. Nature 439, 817–820 (2006).

    ADS  Article  Google Scholar 

  19. Yao, J. M., Manchester, R. N. & Wang, N. A new electron-density model for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).

    ADS  Article  Google Scholar 

  20. Burke-Spolaor, S., Bailes, M., Ekers, R., Macquart, J.-P. & Crawford, F. III Radio bursts with extragalactic spectral characteristics show terrestrial origins. Astrophys. J. 727, 18 (2011).

    ADS  Article  Google Scholar 

  21. Petroff, E. et al. Identifying the source of perytons at the Parkes radio telescope. Mon. Not. R. Astron. Soc. 451, 3933–3940 (2015).

    ADS  Article  Google Scholar 

  22. Keane, E. F., Stappers, B. W., Kramer, M. & Lyne, A. G. On the origin of a highly dispersed coherent radio burst. Mon. Not. R. Astron. Soc. 425, L71–L75 (2012).

    ADS  Article  Google Scholar 

  23. Thornton, D. et al. A population of fast radio bursts at cosmological distances. Science 341, 53–56 (2013).

    ADS  Article  Google Scholar 

  24. Spitler, L. G. et al. Fast radio burst discovered in the Arecibo Pulsar ALFA Survey. Astrophys. J. 790, 101 (2014).

    ADS  Article  Google Scholar 

  25. Masui, K. et al. Dense magnetized plasma associated with a fast radio burst. Nature 528, 523–525 (2015).

    ADS  Article  Google Scholar 

  26. Caleb, M. et al. The first interferometric detections of fast radio bursts. Mon. Not. R. Astron. Soc. 468, 3746–3756 (2017).

    ADS  Article  Google Scholar 

  27. Farah, W. et al. FRB microstructure revealed by the real-time detection of FRB170827. Mon. Not. R. Astron. Soc. 478, 1209–1217 (2018).

    ADS  Article  Google Scholar 

  28. Bannister, K. W. et al. The detection of an extremely bright fast radio burst in a phased array feed survey. Astrophys. J. Lett. 841, L12 (2017).

    ADS  Article  Google Scholar 

  29. Shannon, R. M. et al. The dispersion–brightness relation for fast radio bursts from a wide-field survey. Nature https://doi.org/10.1038/s41586-018-0588-y (2018).

    ADS  Article  Google Scholar 

  30. Boyle, P. C. & CHIME/FRB Collaboration. First detection of fast radio bursts between 400 and 800 MHz by CHIME/FRB. The Astronomer’s Telegram 11901 (2018).

  31. Inoue, S. Probing the cosmic reionization history and local environment of gamma-ray bursts through radio dispersion. Mon. Not. R. Astron. Soc. 348, 999–1008 (2004).

    ADS  Article  Google Scholar 

  32. Spitler, L. G. et al. A repeating fast radio burst. Nature 531, 202–205 (2016).

    ADS  Article  Google Scholar 

  33. Scholz, P. et al. Simultaneous X-ray, gamma-ray, and radio observations of the repeating fast radio burst FRB 121102. Astrophys. J. 846, 80 (2017).

    ADS  Article  Google Scholar 

  34. Law, C. J. et al. A multi-telescope campaign on FRB 121102: Implications for the FRB population. Astrophys. J. 850, 76 (2017).

    ADS  Article  Google Scholar 

  35. Gajjar, V. et al. Highest frequency detection of FRB 121102 at 4-8 GHz using the Breakthrough Listen digital backend at the Green Bank Telescope. Astrophys. J. 863, 2 (2018).

    ADS  Article  Google Scholar 

  36. Chatterjee, S. et al. A direct localization of a fast radio burst and its host. Nature 541, 58–61 (2017).

    ADS  Article  Google Scholar 

  37. Michilli, D. et al. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature 553, 182–185 (2018).

    ADS  Article  Google Scholar 

  38. Tendulkar, S. P. et al. The host galaxy and redshift of the repeating fast radio burst FRB 121102. Astrophys. J. Lett. 834, L7 (2017).

    ADS  Article  Google Scholar 

  39. Marcote, B. et al. The repeating fast radio burst FRB 121102 as seen on milliarcsecond angular scales. Astrophys. J. Lett. 834, L8 (2017).

    ADS  Article  Google Scholar 

  40. Margalit, B. et al. Unveiling the engines of fast radio bursts, super-luminous supernovae, and gamma-ray bursts. Mon. Not. R. Astron. Soc. 481, 2407–2426 (2018).

    ADS  Article  Google Scholar 

  41. Eatough, R. P. et al. A strong magnetic field around the supermassive black hole at the centre of the Galaxy. Nature 501, 391–394 (2013).

    ADS  Article  Google Scholar 

  42. Palaniswamy, D., Li, Y. & Zhang, B. Are There Multiple Populations of Fast Radio Bursts? Astrophys. J. Lett. 854, L12 (2018).

    ADS  Article  Google Scholar 

  43. Fishman, G. J. Gamma-ray bursts: an overview. Publ. Astron. Soc. Pacific 107, 1145 (1995).

    ADS  Article  Google Scholar 

  44. Lingam, M. & Loeb, A. Fast radio bursts from extragalactic light sails. Astrophys. J. Lett. 837, L23 (2017).

    ADS  Article  Google Scholar 

  45. Maoz, D. et al. Fast radio bursts: the observational case for a Galactic origin. Mon. Not. R. Astron. Soc. 454, 2183–2189 (2015).

    ADS  Article  Google Scholar 

  46. Lyubarsky, Y. & Ostrovska, S. Induced Scattering Limits on Fast Radio Bursts from Stellar Coronae. Astrophys. J. 818, 74 (2016).

    ADS  Article  Google Scholar 

  47. Falcke, H. & Rezzolla, L. Fast radio bursts: the last sign of supramassive neutron stars. Astron. Astrophys. 562, A137 (2014).

    ADS  Article  Google Scholar 

  48. Fuller, J. & Ott, C. D. Dark matter-induced collapse of neutron stars: a possible link between fast radio bursts and the missing pulsar problem. Mon. Not. R. Astron. Soc. 450, L71–L75 (2015).

    ADS  Article  Google Scholar 

  49. Totani, T. Cosmological fast radio bursts from binary neutron star mergers. Publ. Astron. Soc. Japan 65, L12 (2013).

    ADS  Article  Google Scholar 

  50. Yamasaki, S., Totani, T. & Kiuchi, K. Repeating and non-repeating fast radio bursts from binary neutron star mergers. Publ. Astron. Soc. Japan 70, 39 (2018).

    ADS  Article  Google Scholar 

  51. Mingarelli, C. M. F., Levin, J. & Lazio, T. J. W. Fast radio bursts and radio transients from black hole batteries. Astrophys. J. Lett. 814, L20 (2015).

    ADS  Article  Google Scholar 

  52. Kashiyama, K., Ioka, K. & Mészáros, P. Cosmological fast radio bursts from binary white dwarf mergers. Astrophys. J. Lett. 776, L39 (2013).

    ADS  Article  Google Scholar 

  53. Abramowicz, M. A., Bejger, M. & Wielgus, M. Collisions of neutron stars with primordial black holes as fast radio bursts engines. Preprint at https://arxiv.org/abs/1704.05931 (2018).

  54. Kavic, M., Simonetti, J. H., Cutchin, S. E., Ellingson, S. W. & Patterson, C. D. Transient pulses from exploding primordial black holes as a signature of an extra dimension. J. Cosmo. Astropart. Phys. 11, 017 (2008).

    ADS  Article  Google Scholar 

  55. Cordes, J. M. & Wasserman, I. Supergiant pulses from extragalactic neutron stars. Mon. Not. R. Astron. Soc. 457, 232–257 (2016).

    ADS  Article  Google Scholar 

  56. Lyutikov, M., Burzawa, L. & Popov, S. B. Fast radio bursts as giant pulses from young rapidly rotating pulsars. Mon. Not. R. Astron. Soc. 462, 941–950 (2016).

    ADS  Article  Google Scholar 

  57. Metzger, B. D., Berger, E. & Margalit, B. Millisecond magnetar birth connects FRB 121102 to superluminous supernovae and long-duration gamma-ray bursts. Astrophys. J. 841, 14 (2017).

    ADS  Article  Google Scholar 

  58. Nicholl, M. et al. Empirical constraints on the origin of fast radio bursts: volumetric rates and host galaxy demographics as a test of millisecond magnetar connection. Astrophys. J. 843, 84 (2017).

    ADS  Article  Google Scholar 

  59. Barrau, A., Rovelli, C. & Vidotto, F. Fast radio bursts and white hole signals. Phys. Rev. D 90, 127503 (2014).

    ADS  Article  Google Scholar 

  60. Zadorozhna, L. V. Fast radio bursts as electromagnetic radiation from cusps on superconducting cosmic strings. Advances in Astronomy and Space Physics 5, 43–50 (2015).

    ADS  Article  Google Scholar 

  61. Cao, X.-F. & Yu, Y.-W. Superconducting cosmic string loops as sources for fast radio bursts. Phys. Rev. D 97, 023022 (2018).

    ADS  Article  Google Scholar 

  62. Caleb, M. et al. Are the distributions of fast radio burst properties consistent with a cosmological population? Mon. Not. R. Astron. Soc. 458, 708–717 (2016).

    ADS  Article  Google Scholar 

  63. Rane, A. A Study of the Fast Radio Burst Population. PhD thesis, West Virginia Univ. (2017).

  64. Bhandari, S. et al. The SUrvey for Pulsars and Extragalactic Radio Bursts - II. New FRB discoveries and their follow-up. Mon. Not. R. Astron. Soc. 475, 1427–1446 (2018).

    ADS  Article  Google Scholar 

  65. Fialkov, A., Loeb, A. & Lorimer, D. R. Enhanced rates of fast radio bursts from galaxy clusters. Astrophys. J. 863, 132 (2018).

    ADS  Article  Google Scholar 

  66. Keane, E. F. The future of fast radio burst science. Nat. Astron. https://doi.org/10.1038/s41550-018-0603-0 (2018).

  67. Rajwade, K. M. & Lorimer, D. R. Detecting fast radio bursts at decametric wavelengths. Mon. Not. R. Astron. Soc. 465, 2286–2293 (2017).

    ADS  Article  Google Scholar 

  68. Li, D. et al. FAST in Space: Considerations for a multibeam, multipurpose survey using China’s 500-m Aperture Spherical Radio Telescope (FAST). IEEE Microwave Magazine 19, 112–119 (2018).

    ADS  Article  Google Scholar 

  69. Sanidas, S. et al. MeerTRAP: A pulsar and fast transients survey with MeerKAT. Proc. Int. Astron.Union 13, 406–407 (2017).

    Article  Google Scholar 

  70. Bloemen, S. et al. MeerLICHT and BlackGEM: custom-built telescopes to detect faint optical transients. Proc. SPIE 9906, 990664 (2016).

    Article  Google Scholar 

  71. Lyutikov, M. & Lorimer, D. R. How else can we detect fast radio bursts? Astrophys. J. Lett. 824, L18 (2016).

    ADS  Article  Google Scholar 

  72. Stappers, B. W. The square kilometre array and the transient universe. Philos. Trans. Royal Soc. A 371, 20120284 (2013).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan R. Lorimer.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lorimer, D.R. A decade of fast radio bursts. Nat Astron 2, 860–864 (2018). https://doi.org/10.1038/s41550-018-0607-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0607-9

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing