Abstract
Galaxy clusters trace the largest structures of the Universe and provide ideal laboratories for studying galaxy evolution and cosmology1,2. Clusters with extended X-ray emission have been discovered at redshifts of up to z ≈ 2.5 (refs 3,4,5,6,7). Meanwhile, there has been growing interest in hunting for protoclusters, the progenitors of clusters, at higher redshifts8,9,10,11,12,13,14. It is, however, very challenging to find the largest protoclusters at early times, when they start to assemble. Here, we report a giant protocluster of galaxies at z ≈ 5.7, when the Universe was only one billion years old. This protocluster occupies a volume of about 353 cubic comoving megaparsecs. It is embedded in an even larger overdense region with at least 41 spectroscopically confirmed, luminous Lyα-emitting galaxies (Lyα emitters, or LAEs), including several previously reported LAEs9. Its LAE density is 6.6 times the average density at z ≈ 5.7. It is the only one of its kind in an LAE survey in 4 deg2 on the sky. Such a large structure is also rarely seen in current cosmological simulations. This protocluster will collapse into a galaxy cluster with a mass of (3.6 ± 0.9) × 1015 solar masses, comparable to those of the most massive clusters or protoclusters known so far.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Data availability
The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.
References
Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005).
Kravtsov, A. V. & Borgani, S. Formation of galaxy clusters. Ann. Rev. Astron. Astrophys. 50, 353–409 (2012).
Papovich, C. et al. A Spitzer-selected galaxy cluster at z = 1.62. Astrophys. J. 716, 1503–1513 (2010).
Gobat, R. et al. A mature cluster with X-ray emission at z = 2.07.Astron. Astrophys. 526, 133–145 (2011).
Stanford, S. A. et al. Discovery of a massive, infrared-selected galaxy cluster at z = 1.75. Astrophys. J. 753, 164–171 (2012).
Andreon, S. et al. JKCS041: a Coma cluster progenitor at z = 1.803.Astron. Astrophys. 565, 120–134 (2014).
Wang, T. et al. Discovery of a galaxy cluster with a violently starbursting core at z = 2.506. Astrophys. J. 828, 56–70 (2016).
Steidel, C. C. et al. A large structure of galaxies at redshift z ~ 3 and its cosmological implications. Astrophys. J. 492, 428–438 (1998).
Ouchi, M. et al. The discovery of primeval large-scale structures with forming clusters at redshift 6. Astrophys. J. Lett. 620, 1–4 (2005).
Venemans, B. P. et al. Protoclusters associated with z > 2 radio galaxies—I. Characteristics of high redshift protoclusters.Astron. Astrophys. 461, 823–845 (2007).
Capak, P. L. et al. A massive protocluster of galaxies at a redshift of z≈5.3. Nature 470, 233–235 (2011).
Toshikawa, J. et al. Discovery of a protocluster at z ~ 6. Astrophys. J. 750, 137–148 (2012).
Dey, A. et al. Spectroscopic confirmation of a protocluster at z ≈ 3.786. Astrophys. J. 823, 11–28 (2016).
Franck, J. R. & McGaugh, S. S. The Candidate Cluster and Protocluster Catalog (CCPC)-II. Spectroscopically identified structures spanning 2 <z<6.6. Astrophys. J. 833, 15–33 (2016).
Overzier, R. A. et al. ΛCDM predictions for galaxy protoclusters—I. The relation between galaxies, protoclusters and quasars at z ~ 6. Mon. Not. R. Astron. Soc. 394, 577–594 (2009).
Chiang, Y.-S., Overzier, R. & Gebhardt, K. Ancient light from young cosmic cities: physical and observational signatures of galaxy protoclusters. Astrophys. J. 779, 127–142 (2013).
Furusawa, H. & et al. The Subaru XMM-NEWTON Deep Survey (SXDS)—II. Optical imaging and photometric catalogs.Astrophys. J.Suppl. 176, 1–18 (2008).
Rhoads, J. E. et al. A luminous Lyα-emitting galaxy at redshift z = 6.535: discovery and spectroscopic confirmation. Astrophys. J. 611, 59–67 (2004).
Shimasaku, K. et al. Lyà emitters at z=5.7 in the Subaru Deep Field. Publ. Astron. Soc. Jpn 58, 313–334 (2006).
Hu, E. M. et al. An atlas of z = 5.7 and z = 6.5 Lyα emitters. Astrophys. J. 725, 394–423 (2010).
Kashikawa, N. et al. Completing the census of Lyα emitters at the reionization epoch. Astrophys. J. 734, 119–137 (2011).
Mateo, M. et al. M2FS: the Michigan/Magellan Fiber System. Proc. SPIE 8446, 84464Y (2012).
Jiang, L. et al. A Magellan M2FS spectroscopic survey of galaxies at 5.5 < z < 6.8: program overview and a sample of the brightest Lyα emitters. Astrophys. J. 846, 134–148 (2017).
Henriques, B. M. B. et al. Galaxy formation in the Planck cosmology—I. Matching the observed evolution of star formation rates, colours and stellar masses. Mon. Not. R. Astron. Soc. 451, 2663–2680 (2015).
Menanteau, F. et al. The Atacama Cosmology Telescope: ACT-CL J0102–4915 ‘El Gordo’, a massive merging cluster at redshift 0.87. Astrophys. J. 748, 7–24 (2012).
Casey, C. M. et al. A massive, distant proto-cluster at z = 2.47 caught in a phase of rapid formation. Astrophys. J. Lett. 808, 33–40 (2015).
Cai, Z. et al. MApping the Most Massive Overdensities Through Hydrogen (MAMMOTH)-II. Discovery of the extremely massive overdensity BOSS1441 at z=2.32. Astrophys. J. 839, 131–141 (2017).
Chiang, Y.-K. et al. Galaxy protoclusters as drivers of cosmic star-formation history in the first 2 Gyr. Astrophys. J. Lett. 844, 23–29 (2017).
Wyithe, J. S. B. & Loeb, A. A characteristic size of ~10 Mpc for the ionized bubbles at the end of cosmic reionization. Nature 432, 194–196 (2004).
Iliev, I. T. et al. Simulating cosmic reionization at large scales—I. The geometry of reionization. Mon. Not. R. Astron. Soc. 369, 1625–1638 (2006).
Jiang, L. et al. Physical properties of spectroscopically confirmed galaxies at z≥6—I. Basic characteristics of the rest-frame UV continuum and Lyα emission. Astrophys. J. 772, 99–118 (2013).
Ouchi, M. et al. Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH)—I. Program strategy and clustering properties of ~2,000 Lyα emitters at z=6–7 over the 0.3–0.5 Gpc2 survey area.Publ. Astron. Soc. Jpn 70, S13 (2018).
Acknowledgements
We acknowledge support from the National Key R&D Program of China (2016YFA0400703 and 2016YFA0400702) and from the National Science Foundation of China (grant 11533001). G.A.B. is supported by CONICYT/FONDECYT, Programa de Iniciacion, Folio 11150220. E.W.O. acknowledges support from the NSF from grant AST1313006. We thank R. de Grijs and M. Ouchi for discussions. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Australian access to the Magellan Telescopes was supported through the National Collaborative Research Infrastructure Strategy of the Australian Federal Government.
Author information
Authors and Affiliations
Contributions
L.J. is the Principal Investigator of the project, analysed the data and prepared the manuscript. J.W. reduced the M2FS images. F.B., Y.S., Z.-Y.Z., J.I.B., J.D.C., M.M. and E.W.O. helped with the M2FS observations. Y.-K.C. carried out the simulations. L.C.H., X.F., R.W. and X.-B.W. prepared the manuscript. G.A.B. and G.A.O. helped with the M2FS data reduction. All authors helped with the scientific interpretations and commented on the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Table 1, Supplementary Figure 1
Rights and permissions
About this article
Cite this article
Jiang, L., Wu, J., Bian, F. et al. A giant protocluster of galaxies at redshift 5.7. Nat Astron 2, 962–966 (2018). https://doi.org/10.1038/s41550-018-0587-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41550-018-0587-9
This article is cited by
-
A Lyman-α protocluster at redshift 6.9
Nature Astronomy (2021)
-
The ancestors of most massive galaxy clusters
Nature Astronomy (2018)