Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A giant protocluster of galaxies at redshift 5.7


Galaxy clusters trace the largest structures of the Universe and provide ideal laboratories for studying galaxy evolution and cosmology1,2. Clusters with extended X-ray emission have been discovered at redshifts of up to z ≈ 2.5 (refs 3,4,5,6,7). Meanwhile, there has been growing interest in hunting for protoclusters, the progenitors of clusters, at higher redshifts8,9,10,11,12,13,14. It is, however, very challenging to find the largest protoclusters at early times, when they start to assemble. Here, we report a giant protocluster of galaxies at z ≈ 5.7, when the Universe was only one billion years old. This protocluster occupies a volume of about 353 cubic comoving megaparsecs. It is embedded in an even larger overdense region with at least 41 spectroscopically confirmed, luminous Lyα-emitting galaxies (Lyα emitters, or LAEs), including several previously reported LAEs9. Its LAE density is 6.6 times the average density at z ≈ 5.7. It is the only one of its kind in an LAE survey in 4 deg2 on the sky. Such a large structure is also rarely seen in current cosmological simulations. This protocluster will collapse into a galaxy cluster with a mass of (3.6 ± 0.9) × 1015 solar masses, comparable to those of the most massive clusters or protoclusters known so far.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example spectra of four LAEs taken by M2FS.
Fig. 2: Schematic representation of the SXDS_gPC region.
Fig. 3: Redshift distribution of the LAEs.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005).

    Article  ADS  Google Scholar 

  2. Kravtsov, A. V. & Borgani, S. Formation of galaxy clusters. Ann. Rev. Astron. Astrophys. 50, 353–409 (2012).

    Article  ADS  Google Scholar 

  3. Papovich, C. et al. A Spitzer-selected galaxy cluster at z = 1.62. Astrophys. J. 716, 1503–1513 (2010).

    Article  ADS  Google Scholar 

  4. Gobat, R. et al. A mature cluster with X-ray emission at z = 2.07.Astron. Astrophys. 526, 133–145 (2011).

    Article  Google Scholar 

  5. Stanford, S. A. et al. Discovery of a massive, infrared-selected galaxy cluster at z = 1.75. Astrophys. J. 753, 164–171 (2012).

    Article  ADS  Google Scholar 

  6. Andreon, S. et al. JKCS041: a Coma cluster progenitor at z = 1.803.Astron. Astrophys. 565, 120–134 (2014).

    Article  Google Scholar 

  7. Wang, T. et al. Discovery of a galaxy cluster with a violently starbursting core at z = 2.506. Astrophys. J. 828, 56–70 (2016).

    Article  ADS  Google Scholar 

  8. Steidel, C. C. et al. A large structure of galaxies at redshift z ~ 3 and its cosmological implications. Astrophys. J. 492, 428–438 (1998).

    Article  ADS  Google Scholar 

  9. Ouchi, M. et al. The discovery of primeval large-scale structures with forming clusters at redshift 6. Astrophys. J. Lett. 620, 1–4 (2005).

    Article  ADS  Google Scholar 

  10. Venemans, B. P. et al. Protoclusters associated with z > 2 radio galaxies—I. Characteristics of high redshift protoclusters.Astron. Astrophys. 461, 823–845 (2007).

    Article  ADS  Google Scholar 

  11. Capak, P. L. et al. A massive protocluster of galaxies at a redshift of z≈5.3. Nature 470, 233–235 (2011).

    Article  ADS  Google Scholar 

  12. Toshikawa, J. et al. Discovery of a protocluster at z ~ 6. Astrophys. J. 750, 137–148 (2012).

    Article  ADS  Google Scholar 

  13. Dey, A. et al. Spectroscopic confirmation of a protocluster at z ≈ 3.786. Astrophys. J. 823, 11–28 (2016).

    Article  ADS  Google Scholar 

  14. Franck, J. R. & McGaugh, S. S. The Candidate Cluster and Protocluster Catalog (CCPC)-II. Spectroscopically identified structures spanning 2 <z<6.6. Astrophys. J. 833, 15–33 (2016).

    Article  ADS  Google Scholar 

  15. Overzier, R. A. et al. ΛCDM predictions for galaxy protoclusters—I. The relation between galaxies, protoclusters and quasars at z ~ 6. Mon. Not. R. Astron. Soc. 394, 577–594 (2009).

    Article  ADS  Google Scholar 

  16. Chiang, Y.-S., Overzier, R. & Gebhardt, K. Ancient light from young cosmic cities: physical and observational signatures of galaxy protoclusters. Astrophys. J. 779, 127–142 (2013).

    Article  ADS  Google Scholar 

  17. Furusawa, H. & et al. The Subaru XMM-NEWTON Deep Survey (SXDS)—II. Optical imaging and photometric catalogs.Astrophys. J.Suppl. 176, 1–18 (2008).

    Article  ADS  Google Scholar 

  18. Rhoads, J. E. et al. A luminous Lyα-emitting galaxy at redshift z = 6.535: discovery and spectroscopic confirmation. Astrophys. J. 611, 59–67 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  19. Shimasaku, K. et al. Lyà emitters at z=5.7 in the Subaru Deep Field. Publ. Astron. Soc. Jpn 58, 313–334 (2006).

    Article  ADS  Google Scholar 

  20. Hu, E. M. et al. An atlas of z = 5.7 and z = 6.5 Lyα emitters. Astrophys. J. 725, 394–423 (2010).

    Article  ADS  Google Scholar 

  21. Kashikawa, N. et al. Completing the census of Lyα emitters at the reionization epoch. Astrophys. J. 734, 119–137 (2011).

    Article  ADS  Google Scholar 

  22. Mateo, M. et al. M2FS: the Michigan/Magellan Fiber System. Proc. SPIE 8446, 84464Y (2012).

    Article  Google Scholar 

  23. Jiang, L. et al. A Magellan M2FS spectroscopic survey of galaxies at 5.5 < z < 6.8: program overview and a sample of the brightest Lyα emitters. Astrophys. J. 846, 134–148 (2017).

    Article  ADS  Google Scholar 

  24. Henriques, B. M. B. et al. Galaxy formation in the Planck cosmology—I. Matching the observed evolution of star formation rates, colours and stellar masses. Mon. Not. R. Astron. Soc. 451, 2663–2680 (2015).

    Article  ADS  Google Scholar 

  25. Menanteau, F. et al. The Atacama Cosmology Telescope: ACT-CL J0102–4915 ‘El Gordo’, a massive merging cluster at redshift 0.87. Astrophys. J. 748, 7–24 (2012).

    Article  ADS  Google Scholar 

  26. Casey, C. M. et al. A massive, distant proto-cluster at z = 2.47 caught in a phase of rapid formation. Astrophys. J. Lett. 808, 33–40 (2015).

    Article  ADS  Google Scholar 

  27. Cai, Z. et al. MApping the Most Massive Overdensities Through Hydrogen (MAMMOTH)-II. Discovery of the extremely massive overdensity BOSS1441 at z=2.32. Astrophys. J. 839, 131–141 (2017).

    Article  ADS  Google Scholar 

  28. Chiang, Y.-K. et al. Galaxy protoclusters as drivers of cosmic star-formation history in the first 2 Gyr. Astrophys. J. Lett. 844, 23–29 (2017).

    Article  ADS  Google Scholar 

  29. Wyithe, J. S. B. & Loeb, A. A characteristic size of ~10 Mpc for the ionized bubbles at the end of cosmic reionization. Nature 432, 194–196 (2004).

    Article  ADS  Google Scholar 

  30. Iliev, I. T. et al. Simulating cosmic reionization at large scales—I. The geometry of reionization. Mon. Not. R. Astron. Soc. 369, 1625–1638 (2006).

    Article  ADS  Google Scholar 

  31. Jiang, L. et al. Physical properties of spectroscopically confirmed galaxies at z≥6—I. Basic characteristics of the rest-frame UV continuum and Lyα emission. Astrophys. J. 772, 99–118 (2013).

    Article  ADS  Google Scholar 

  32. Ouchi, M. et al. Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH)—I. Program strategy and clustering properties of ~2,000 Lyα emitters at z=6–7 over the 0.3–0.5 Gpc2 survey area.Publ. Astron. Soc. Jpn 70, S13 (2018).

    Article  ADS  Google Scholar 

Download references


We acknowledge support from the National Key R&D Program of China (2016YFA0400703 and 2016YFA0400702) and from the National Science Foundation of China (grant 11533001). G.A.B. is supported by CONICYT/FONDECYT, Programa de Iniciacion, Folio 11150220. E.W.O. acknowledges support from the NSF from grant AST1313006. We thank R. de Grijs and M. Ouchi for discussions. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Australian access to the Magellan Telescopes was supported through the National Collaborative Research Infrastructure Strategy of the Australian Federal Government.

Author information

Authors and Affiliations



L.J. is the Principal Investigator of the project, analysed the data and prepared the manuscript. J.W. reduced the M2FS images. F.B., Y.S., Z.-Y.Z., J.I.B., J.D.C., M.M. and E.W.O. helped with the M2FS observations. Y.-K.C. carried out the simulations. L.C.H., X.F., R.W. and X.-B.W. prepared the manuscript. G.A.B. and G.A.O. helped with the M2FS data reduction. All authors helped with the scientific interpretations and commented on the manuscript.

Corresponding author

Correspondence to Linhua Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figure 1

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Wu, J., Bian, F. et al. A giant protocluster of galaxies at redshift 5.7. Nat Astron 2, 962–966 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing