Cryovolcanic rates on Ceres revealed by topography

Abstract

Cryovolcanism, defined here as the extrusion of icy material from depth, may be an important planetary phenomenon in shaping the surfaces of many worlds in the outer Solar System and revealing their thermal histories1,2,3. However, the physics, chemistry and ubiquity of this geologic process remain poorly understood, especially in comparison to the better-studied silicate volcanism on the terrestrial planets. Ceres is the only plausibly cryovolcanic world to be orbited by a spacecraft up to now, making it the best opportunity to test the importance of cryovolcanism on bodies in the outer Solar System and compare its effects to silicate volcanism on terrestrial planets. Here, we analyse images from NASA’s Dawn mission4 and use the finite element method to show that Ceres has experienced cryovolcanism throughout its geologic history, with an average cryomagma extrusion rate of ~104 m3 yr−1. This result shows that volcanic phenomena are important on Ceres, but orders of magnitude less so than on the terrestrial planets.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Observations of domes on Ceres.
Fig. 2: Model results of dome evolution and ages.
Fig. 3: Comparison of volcanic rates with those of other planets.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. The data come from NASA’s Dawn mission and are also publically available in the NASA Planetary Data System (https://pds.nasa.gov).

Change history

  • 18 October 2018

    In the version of this Letter originally published, the unit in the right y axis label in Fig. 3 mistakenly read ‘(m yr–1)’; it has now been corrected to read ‘(m Myr–1)’.

References

  1. 1.

    Kargel, J. S. Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 94, 368–390 (1991).

    ADS  Article  Google Scholar 

  2. 2.

    Schenk, P. M., McKinnon, W. B., Gwynn, D. & Moore, J. M. Flooding of Ganymede’s bright terrains by low-viscosity water-ice lavas. Nature 410, 57–60 (2001).

    ADS  Article  Google Scholar 

  3. 3.

    Quick, L. C., Glaze, L. S. & Baloga, S. M. Cryovolcanic emplacement of domes on Europa. Icarus 284, 477–499 (2017).

    ADS  Article  Google Scholar 

  4. 4.

    Russell, C. T. et al. Dawn arrives at Ceres: exploration of a small, volatile-rich world. Science 353, 1008–1010 (2016).

    ADS  Article  Google Scholar 

  5. 5.

    Ruesch, O. et al. Cryovolcanism on Ceres. Science 353, aaf4286 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Sori, M. M. et al. The vanishing cryovolcanoes of Ceres. Geophys. Res. Lett. 44, 1243–1250 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Bland, M. T. et al. Composition and structure of the shallow subsurface of Ceres revealed by crater morphology. Nature Geosci. 9, 528–542 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Fu, R. R. et al. The interior structure of Ceres as revealed by surface topography. Earth. Planet. Sci. Lett. 476, 153–164 (2017).

    ADS  Article  Google Scholar 

  9. 9.

    Buczkowski, D. L. et al. The geomorphology of Ceres. Science 353, aaf4332 (2016).

    ADS  Article  Google Scholar 

  10. 10.

    Park, R. S. et al. A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature 537, 515–517 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    Williams, D. A. et al. Introduction: the geologic mapping of Ceres. Icarus https://doi.org/10.1016/j.icarus.2017.05.004 (2018).

  12. 12.

    Greeley, R. & Spudis, P. D. Volcanism on Mars. Rev. Geophys. Space Phys. 19, 13–41 (1981).

    ADS  Article  Google Scholar 

  13. 13.

    Stein, N. T. et al. The formation and evolution of bright spots on Ceres. Icarus https://doi.org/10.1016/j.icarus.2017.10.014 (2018).

  14. 14.

    Goldsby, D. L. & Kohlstedt, D. L. Superplastic deformation of ice: experimental observations. J. Geophys. Res. 106, 11017–11030 (2001).

    ADS  Article  Google Scholar 

  15. 15.

    Durham, W. B., Pathare, A. V., Stern, L. A. & Lenferink, H. J. Mobility of icy sand packs, with application to Martian permafrost. Geophys. Res. Lett. 36, L23203 (2009).

    ADS  Article  Google Scholar 

  16. 16.

    Bramson, A. M., Byrne, S. & Bapst, J. Preservation of midlatitude ice sheets on Mars. J. Geophys. Res. Planets 122, 2250–2266 (2017).

    ADS  Article  Google Scholar 

  17. 17.

    Zambon, F. et al. Spectral analysis of Ahuna Mons from Dawn mission’s visible-infrared spectrometer. Geophys. Res. Lett. 44, 97–104 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Ruesch, O. et al. Geology of Ceres’ north pole quadrangle with Dawn FC imaging data. Icarus https://doi.org/10.1016/j.icarus.2017.09.036 (2018).

  19. 19.

    Bland, M. T. et al. Why is Ceres lumpy? Surface deformation induced by solid-state subsurface flow. In 49th Lunar and Planetary Science Conference 1627 (LPI, 2018).

  20. 20.

    Golombek, M. P. et al. Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars. J. Geophys. Res. Planets 119, 2522–2547 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    Fassett, C. I. et al. Evidence for rapid topographic evolution and crater degradation on Mercury from simple crater morphometry. Geophys. Res. Lett. 44, 5326–5335 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Platz, T. et al. Geological mapping of the Ac-10 Rongo quadrangle of Ceres. Icarus https://doi.org/10.1016/j.icarus.2017.08.001 (2018).

  23. 23.

    Marchi, S. et al. The missing large impact craters on Ceres. Nat. Commun. 7, 12257 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    De Sanctis, M. C. et al. Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature 536, 54–57 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Ruesch, O. et al. Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains. Icarus https://doi.org/10.1016/j.icarus.2018.01.022 (2018).

  26. 26.

    Quick, L. C. et al. A possible brine reservoir beneath Occator crater: thermal and composition evolution and formation of the Cerealia dome and Vinalia Faculae. Icarus https://doi.org/10.1016/j.icarus.2018.07.016 (2018).

  27. 27.

    Nathues, A. et al. Evolution of Occator crater on (1)Ceres. Astron. J. 153, 112 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Taisne, B. & Jaupart, C. Magma degassing and intermittent lava dome growth. Geophys. Res. Lett. 35, L20310 (2008).

    ADS  Article  Google Scholar 

  29. 29.

    Sori, M. M., Zuber, M. T., Head, J. W. & Kiefer, W. S. Gravitational search for cryptovolcanism on the Moon: evidence for large volumes of early igneous activity. Icarus 273, 284–295 (2016).

    ADS  Article  Google Scholar 

  30. 30.

    Crisp, J. A. Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 20, 177–211 (1984).

    ADS  Article  Google Scholar 

  31. 31.

    Grimm, R. E. & Solomon, S. C. Limits on modes of lithospheric heat transport on Venus from impact crater density. Geophys. Res. Lett. 14, 538–541 (1987).

    ADS  Article  Google Scholar 

  32. 32.

    Head, J. W. & Wilson, L. Lunar mare volcanism: stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochem. Cosmochim. Acta 56, 2155–2175 (1992).

    ADS  Article  Google Scholar 

  33. 33.

    Greeley, R. & Schneid, B. D. Magma generation on Mars: amounts, rates, and comparisons with Earth, Moon, and Venus. Science 254, 996–998 (1991).

    ADS  Article  Google Scholar 

  34. 34.

    Zahnle, K., Alvarellos, J. A., Dobrovolskis, A. & Hamill, P. Secondary and sesquinary craters on Europa. Icarus 194, 660–674 (2008).

    ADS  Article  Google Scholar 

  35. 35.

    Gross, P., van Wyk de Vries, B., Euillades, P. A., Kervyn, M. & Petrinovic, I. A. Systematic morphometric characterization of volcanic edifices using digital elevation models. Geomorphology 136, 114–131 (2012).

    ADS  Article  Google Scholar 

  36. 36.

    Euillades, L. D., Grosse, P. & Euillades, P. A. NETVOLC: an algorithm for automatic delimitation of volcano edifice boundaries using DEMs. Comput. Geosci. 56, 151–160 (2013).

    ADS  Article  Google Scholar 

  37. 37.

    Ermakov, A. I. et al. Constraints on Ceres’ internal structure and evolution from its shape and gravity measured by the Dawn spacecraft. J. Geophys. Res. Planets 122, 2267–2293 (2017).

    ADS  Article  Google Scholar 

  38. 38.

    Gagliardini, O. et al. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model. Geosci Model Dev. 6, 1299–1318 (2013).

    ADS  Article  Google Scholar 

  39. 39.

    Sori, M. M., Byrne, S., Hamilton, C. W. & Landis, M. E. Viscous flow rates of icy topography on the north polar layered deposits of Mars. Geophys. Res. Lett. 43, 541–549 (2016).

    ADS  Article  Google Scholar 

  40. 40.

    McCarthy, C., Cooper, R. F., Goldsby, D. L., Durham, W. B. & Kirby, S. H. Transient and steady state creep response of ice I and magnesium sulfate hydrate eutectic aggregates. J. Geophys. Res. 116, E04007 (2011).

    ADS  Google Scholar 

  41. 41.

    Durham, W. B., Kirby, S. H. & Stern, L. A. Effects of dispersed particulates on the rheology of water ice at planetary conditions. J. Geophys. Res. 97, 20833–20897 (1992).

    Article  Google Scholar 

  42. 42.

    Durham, W. B., Stern, L. A., Kubo, T. & Kirby, S. H. Flow strength of highly hydrated Mg- and Na-sulfate hydrate salts, pure and in mixtures with water ice, with application to Europa. J. Geophys. Res. 110, E12010 (2005).

    ADS  Article  Google Scholar 

  43. 43.

    Wieczorek, M. A. et al. The crust of the Moon as seen by GRAIL. Science 339, 671–675 (2013).

    ADS  Article  Google Scholar 

  44. 44.

    Soderblom, J. M. et al. The fractured Moon: production and saturation of porosity in the lunar highlands from impact cratering. Geophys. Res. Lett. 42, 6939–6944 (2015).

    ADS  Article  Google Scholar 

  45. 45.

    Castillo-Rogez, J. C. et al. Ceres' geophysical evolution inferred from Dawn data. AAS/Division for Planet. Sci. 48, 407.05 (2016).

    ADS  Google Scholar 

  46. 46.

    Ermakov, A. I. et al. Ceres’s obliquity history and its implications for the permanently shadowed regions. Geophys. Res. Lett. 44, 2652–2661 (2017).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

M.M.S., S.B., H.G.S. and M.T.B. acknowledge support from the National Aeronautics and Space Administration (NASA) Dawn Guest Investigator Program. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Affiliations

Authors

Contributions

M.M.S. formulated the project, performed all viscous flow model runs and led writing of this paper. M.M.S. and H.G.S. identified and analysed the domes suitable for this study. A.M.B. performed the thermal model runs. All authors contributed substantially to the interpretation of results and writing of this paper.

Corresponding author

Correspondence to Michael M. Sori.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sori, M.M., Sizemore, H.G., Byrne, S. et al. Cryovolcanic rates on Ceres revealed by topography. Nat Astron 2, 946–950 (2018). https://doi.org/10.1038/s41550-018-0574-1

Download citation

Further reading