Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Turbulent action at a distance due to stellar feedback in magnetized clouds

Abstract

A fundamental property of molecular clouds is that they are turbulent1, but how this turbulence is generated and maintained is unknown. One possibility is that stars forming within the cloud regenerate turbulence via their outflows, winds and radiation (‘feedback’)2. However, disentangling motions created by feedback from the initial cloud turbulence is challenging. Here, we confront the relationship between stellar feedback and turbulence by identifying and separating the local and global impact of stellar winds. We analyse magnetohydrodynamic simulations in which we track wind material as it interacts with the ambient cloud. By distinguishing between launched material, gas entrained by the wind and pristine gas we show energy is transferred away from the sources via magnetic waves excited by the expanding wind shells. This action at a distance enhances the fraction of stirring motion compared with compressing motion and produces a flatter velocity power spectrum. We conclude that stellar feedback accounts for significant energy transfer within molecular clouds—an impact enhanced by magnetic waves, which have previously been neglected by observations. Overall, stellar feedback can partially offset global turbulence dissipation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Velocity dispersion, vrms, as a function of time, t.
Fig. 2: Gas density and magnetic field strength (\(B_{\rm{rms}}\) = \(\left( {B_x^2 + B_y^2 + B_z^2} \right)^{1/2}\)).
Fig. 3: Velocity power spectra for the strong-wind run (W1T2) at various times.
Fig. 4: Fraction of turbulence that is solenoidal versus time.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. McKee, C. F. & Ostriker, E. Theory of star formation. Ann. Rev. Astron. Astrophys. 45, 565–687 (2007).

    Article  ADS  Google Scholar 

  2. Krumholz, M. R. et al. in Protostars and Planets VI (eds Beuther, H., Klessen, R. S., Dullemond, C. P. & Henning, T.) 243–266 (University of Arizona Press, Tucson, AZ, 2014).

  3. Offner, S. S. R. et al. in Protostars and Planets VI (eds Beuther, H., Klessen, R. S., Dullemond, C. P. & Henning, T.) 53–75 (University of Arizona Press, Tucson, AZ, 2014).

  4. Stone, J. M., Ostriker, E. C. & Gammie, C. F. Dissipation in compressible magnetohydrodynamic turbulence. Astrophys. J. Lett. 508, L99–L102 (1998).

    Article  ADS  Google Scholar 

  5. Elmegreen, B. G. Star formation in a crossing time. Astrophys. J. 530, 277–281 (2000).

    Article  ADS  Google Scholar 

  6. Vázquez-Semadeni, E. et al. Molecular cloud evolution. II. From cloud formation to the early stages of star formation in decaying conditions. Astrophys. J. 657, 870–883 (2007).

    Article  ADS  Google Scholar 

  7. Robertson, B. & Goldreich, P. Adiabatic heating of contracting turbulent fluids. Astrophys. J. Lett. 750, L31–L36 (2012).

    Article  ADS  Google Scholar 

  8. Heitsch, F. & Hartmann, L. Rapid molecular cloud and star formation: mechanisms and movies. Astrophys. J. 689, 290–301 (2008).

    Article  ADS  Google Scholar 

  9. Hopkins, P. F. et al. Galaxies on FIRE (feedback in realistic environments): stellar feedback explains cosmologically inefficient star formation. Mon. Not. R. Astron. Soc. 445, 581–603 (2014).

    Article  ADS  Google Scholar 

  10. Agertz, O. & Kravtsov, A. V. On the interplay between star formation and feedback in galaxy formation simulations. Astrophys. J. 804, 18–38 (2015).

    Article  ADS  Google Scholar 

  11. Gatto, A. et al. The SILCC project—III. Regulation of star formation and outflows by stellar winds and supernovae. Mon. Not. R. Astron. Soc. 466, 1903–1924 (2017).

    Article  ADS  Google Scholar 

  12. Caldú-Primo, A. et al. A high-dispersion molecular gas component in nearby galaxies. Astron. J. 146, 150–164 (2013).

    Article  ADS  Google Scholar 

  13. Krumholz, M. R. & Burkhart, B. Is turbulence in the interstellar medium driven by feedback or gravity? An observational test. Mon. Not. R. Astron. Soc. 458, 1671–1677 (2016).

    Article  ADS  Google Scholar 

  14. Offner, S. S. R. & Arce, H. G. Impact of winds from intermediate-mass stars on molecular cloud structure and turbulence. Astrophys. J. 811, 146–165 (2015).

    Article  ADS  Google Scholar 

  15. Matzner, C. D. On the role of massive stars in the support and destruction of giant molecular clouds. Astrophys. J. 566, 302–314 (2002).

    Article  ADS  Google Scholar 

  16. Heitsch, F. & Burkert, A. Alfvén-wave driven turbulence in molecular clouds. In Modes of Star Formation and the Origin of Field Populations (eds Grebel, E. K. & Brandner, W.) 13–29 (Conference Series Volume 285, Astronomical Society of the Pacific, San Francisco, CA, 2002).

  17. Wang, P., Li, Z., Abel, T. & Nakamura, F. Outflow feedback regulated massive star formation in parsec-scale cluster-forming clumps. Astrophys. J. 709, 27–41 (2010).

    Article  ADS  Google Scholar 

  18. Offner, S. S. R. & Chaban, J. Impact of protostellar outflows on turbulence and star formation efficiency in magnetized dense cores. Astrophys. J. 847, 104–123 (2017).

    Article  ADS  Google Scholar 

  19. Tritsis, A. & Tassis, K. Magnetic seismology of interstellar gas clouds: unveiling a hidden dimension. Science 360, 635–638 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  20. Larson, R. L., Evans, N. J. II, Green, J. D. & Yang, Y.-L. Evidence for decay of turbulence by MHD shocks in the ISM via CO emission. Astrophys. J. 806, 70–75 (2015).

    Article  ADS  Google Scholar 

  21. Carroll, J. J., Frank, A., Blackman, E. G., Cunningham, A. J. & Quillen, A. C. Outflow-driven turbulence in molecular clouds. Astrophys. J. 695, 1376–1381 (2009).

    Article  ADS  Google Scholar 

  22. Hansen, C. E., Klein, R. I., McKee, C. F. & Fisher, R. T. Feedback effects on low-mass star formation. Astrophys. J. 747, 22–40 (2012).

    Article  ADS  Google Scholar 

  23. Boyden, R. D., Koch, E. W., Rosolowsky, E. W. & Offner, S. S. R. An exploration of the statistical signatures of stellar feedback. Astrophys. J. 833, 231–254 (2016).

    Article  Google Scholar 

  24. Swift, J. J. & Welch, W. J. A case study of low-mass star formation. Astrophys. J. Suppl. 174, 202–222 (2008).

    Article  ADS  Google Scholar 

  25. Arce, H. G., Borkin, M. A., Goodman, A. A., Pineda, J. E. & Beaumont, C. N. A bubbling nearby molecular cloud: COMPLETE shells in Perseus. Astrophys. J. 742, 105–134 (2011).

    Article  ADS  Google Scholar 

  26. Gendelev, L. & Krumholz, M. R. Evolution of Blister-type H II regions in a magnetized medium. Astrophys. J. 745, 158–169 (2012).

    Article  ADS  Google Scholar 

  27. Federrath, C. On the universality of supersonic turbulence. Mon. Not. R. Astron. Soc. 436, 1245–1257 (2013).

    Article  ADS  Google Scholar 

  28. Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W. & Mac Low, M.-M. Comparing the statistics of interstellar turbulence in simulations and observations. Solenoidal versus compressive turbulence forcing. Astron. Astrophys. 512, A81–A107 (2010).

    Article  ADS  Google Scholar 

  29. Federrath, C. & Klessen, R. S. The star formation rate of turbulent magnetized clouds: comparing theory, simulations, and observations. Astrophys. J. 761, 156–187 (2012).

    Article  ADS  Google Scholar 

  30. Offner, S. S. R. & Arce, H. G. Investigations of protostellar outflow launching and gas entrainment: hydrodynamic simulations and molecular emission. Astrophys. J. 784, 61–75 (2014).

    Article  ADS  Google Scholar 

  31. Li, P. S., McKee, C. F. & Klein, R. I. Magnetized interstellar molecular clouds—I. Comparison between simulations and Zeeman observations. Mon. Not. R. Astron. Soc. 452, 2500–2527 (2015).

    Article  ADS  Google Scholar 

  32. Truelove, J. K. et al. Self-gravitational hydrodynamics with three-dimensional adaptive mesh refinement: methodology and applications to molecular cloud collapse and fragmentation. Astrophys. J. 495, 821–852 (1998).

    Article  ADS  Google Scholar 

  33. Klein, R. I. Star formation with 3-D adaptive mesh refinement: the collapse and fragmentation of molecular clouds. J. Comput. Appl. Math. 109, 123–152 (1999).

    Article  ADS  Google Scholar 

  34. Krumholz, M. R., McKee, C. F. & Klein, R. I. Embedding Lagrangian sink particles in Eulerian grids. Astrophys. J. 611, 399–412 (2004).

    Article  ADS  Google Scholar 

  35. Cunningham, A. J., Klein, R. I., Krumholz, M. R. & McKee, C. F. Radiation-hydrodynamic simulations of massive star formation with protostellar outflows. Astrophys. J. 740, 107–124 (2011).

    Article  ADS  Google Scholar 

  36. Vink, J. S., de Koter, A. & Lamers, H. J. G. L. M. Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001).

    Article  ADS  Google Scholar 

  37. Rosen, A. L., Krumholz, M. R., McKee, C. F. & Klein, R. I. An unstable truth: how massive stars get their mass. Mon. Not. R. Astron. Soc. 463, 2553–2573 (2016).

    Article  ADS  Google Scholar 

  38. Xu, D. & Offner, S. S. R. Assessing the performance of a machine learning algorithm in identifying bubbles in dust emission. Astrophys. J. 851, 149–160 (2017).

    Article  ADS  Google Scholar 

  39. Truelove, J. K. et al. The Jeans condition: a new constraint on spatial resolution in simulations of isothermal self-gravitational hydrodynamics. Astrophys. J. Lett. 489, L179–L183 (1997).

    Article  ADS  Google Scholar 

  40. Koo, B.-C. & McKee, C. F. Dynamics of wind bubbles and superbubbles. I—slow winds and fast winds. II—analytic theory. Astrophys. J. 388, 93–126 (1992).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

S.S.R.O. thanks A. Lee, B. Gaches and P. Kumar for helpful comments. S.S.R.O. acknowledges support from NSF Career grant AST-1650486. The data analyses, images and animations were made possible by yt, an open-source Python package for analysing and visualizing volumetric data. Some of the simulations were performed on the Yale University Omega cluster, which is supported in part by the facilities and staff of the Yale University Faculty of Arts and Sciences High Performance Computing Center. The rest of the simulations were carried out on resources at the Massachusetts Green High Performance Computing Center, supported by staff at the University of Massachusetts.

Author information

Authors and Affiliations

Authors

Contributions

S.S.R.O. performed all the simulations without self-gravity, carried out the analyses, produced the figures and wrote the paper. Y.L. carried out the simulations with gravity and performed a preliminary analysis.

Corresponding author

Correspondence to Stella S. R. Offner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–2, Supplementary Figures 1–5, Supplementary Video 1 caption

Supplementary Video 1

Slices through the magnetic field strength for two sources in model W2T2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Offner, S.S.R., Liu, Y. Turbulent action at a distance due to stellar feedback in magnetized clouds. Nat Astron 2, 896–900 (2018). https://doi.org/10.1038/s41550-018-0566-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0566-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing