Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Turbulent action at a distance due to stellar feedback in magnetized clouds

Abstract

A fundamental property of molecular clouds is that they are turbulent1, but how this turbulence is generated and maintained is unknown. One possibility is that stars forming within the cloud regenerate turbulence via their outflows, winds and radiation (‘feedback’)2. However, disentangling motions created by feedback from the initial cloud turbulence is challenging. Here, we confront the relationship between stellar feedback and turbulence by identifying and separating the local and global impact of stellar winds. We analyse magnetohydrodynamic simulations in which we track wind material as it interacts with the ambient cloud. By distinguishing between launched material, gas entrained by the wind and pristine gas we show energy is transferred away from the sources via magnetic waves excited by the expanding wind shells. This action at a distance enhances the fraction of stirring motion compared with compressing motion and produces a flatter velocity power spectrum. We conclude that stellar feedback accounts for significant energy transfer within molecular clouds—an impact enhanced by magnetic waves, which have previously been neglected by observations. Overall, stellar feedback can partially offset global turbulence dissipation.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Velocity dispersion, vrms, as a function of time, t.
Fig. 2: Gas density and magnetic field strength (\(B_{\rm{rms}}\) = \(\left( {B_x^2 + B_y^2 + B_z^2} \right)^{1/2}\)).
Fig. 3: Velocity power spectra for the strong-wind run (W1T2) at various times.
Fig. 4: Fraction of turbulence that is solenoidal versus time.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    McKee, C. F. & Ostriker, E. Theory of star formation. Ann. Rev. Astron. Astrophys. 45, 565–687 (2007).

    ADS  Article  Google Scholar 

  2. 2.

    Krumholz, M. R. et al. in Protostars and Planets VI (eds Beuther, H., Klessen, R. S., Dullemond, C. P. & Henning, T.) 243–266 (University of Arizona Press, Tucson, AZ, 2014).

  3. 3.

    Offner, S. S. R. et al. in Protostars and Planets VI (eds Beuther, H., Klessen, R. S., Dullemond, C. P. & Henning, T.) 53–75 (University of Arizona Press, Tucson, AZ, 2014).

  4. 4.

    Stone, J. M., Ostriker, E. C. & Gammie, C. F. Dissipation in compressible magnetohydrodynamic turbulence. Astrophys. J. Lett. 508, L99–L102 (1998).

    ADS  Article  Google Scholar 

  5. 5.

    Elmegreen, B. G. Star formation in a crossing time. Astrophys. J. 530, 277–281 (2000).

    ADS  Article  Google Scholar 

  6. 6.

    Vázquez-Semadeni, E. et al. Molecular cloud evolution. II. From cloud formation to the early stages of star formation in decaying conditions. Astrophys. J. 657, 870–883 (2007).

    ADS  Article  Google Scholar 

  7. 7.

    Robertson, B. & Goldreich, P. Adiabatic heating of contracting turbulent fluids. Astrophys. J. Lett. 750, L31–L36 (2012).

    ADS  Article  Google Scholar 

  8. 8.

    Heitsch, F. & Hartmann, L. Rapid molecular cloud and star formation: mechanisms and movies. Astrophys. J. 689, 290–301 (2008).

    ADS  Article  Google Scholar 

  9. 9.

    Hopkins, P. F. et al. Galaxies on FIRE (feedback in realistic environments): stellar feedback explains cosmologically inefficient star formation. Mon. Not. R. Astron. Soc. 445, 581–603 (2014).

    ADS  Article  Google Scholar 

  10. 10.

    Agertz, O. & Kravtsov, A. V. On the interplay between star formation and feedback in galaxy formation simulations. Astrophys. J. 804, 18–38 (2015).

    ADS  Article  Google Scholar 

  11. 11.

    Gatto, A. et al. The SILCC project—III. Regulation of star formation and outflows by stellar winds and supernovae. Mon. Not. R. Astron. Soc. 466, 1903–1924 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Caldú-Primo, A. et al. A high-dispersion molecular gas component in nearby galaxies. Astron. J. 146, 150–164 (2013).

    ADS  Article  Google Scholar 

  13. 13.

    Krumholz, M. R. & Burkhart, B. Is turbulence in the interstellar medium driven by feedback or gravity? An observational test. Mon. Not. R. Astron. Soc. 458, 1671–1677 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Offner, S. S. R. & Arce, H. G. Impact of winds from intermediate-mass stars on molecular cloud structure and turbulence. Astrophys. J. 811, 146–165 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    Matzner, C. D. On the role of massive stars in the support and destruction of giant molecular clouds. Astrophys. J. 566, 302–314 (2002).

    ADS  Article  Google Scholar 

  16. 16.

    Heitsch, F. & Burkert, A. Alfvén-wave driven turbulence in molecular clouds. In Modes of Star Formation and the Origin of Field Populations (eds Grebel, E. K. & Brandner, W.) 13–29 (Conference Series Volume 285, Astronomical Society of the Pacific, San Francisco, CA, 2002).

  17. 17.

    Wang, P., Li, Z., Abel, T. & Nakamura, F. Outflow feedback regulated massive star formation in parsec-scale cluster-forming clumps. Astrophys. J. 709, 27–41 (2010).

    ADS  Article  Google Scholar 

  18. 18.

    Offner, S. S. R. & Chaban, J. Impact of protostellar outflows on turbulence and star formation efficiency in magnetized dense cores. Astrophys. J. 847, 104–123 (2017).

    ADS  Article  Google Scholar 

  19. 19.

    Tritsis, A. & Tassis, K. Magnetic seismology of interstellar gas clouds: unveiling a hidden dimension. Science 360, 635–638 (2018).

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    Larson, R. L., Evans, N. J. II, Green, J. D. & Yang, Y.-L. Evidence for decay of turbulence by MHD shocks in the ISM via CO emission. Astrophys. J. 806, 70–75 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Carroll, J. J., Frank, A., Blackman, E. G., Cunningham, A. J. & Quillen, A. C. Outflow-driven turbulence in molecular clouds. Astrophys. J. 695, 1376–1381 (2009).

    ADS  Article  Google Scholar 

  22. 22.

    Hansen, C. E., Klein, R. I., McKee, C. F. & Fisher, R. T. Feedback effects on low-mass star formation. Astrophys. J. 747, 22–40 (2012).

    ADS  Article  Google Scholar 

  23. 23.

    Boyden, R. D., Koch, E. W., Rosolowsky, E. W. & Offner, S. S. R. An exploration of the statistical signatures of stellar feedback. Astrophys. J. 833, 231–254 (2016).

    Article  Google Scholar 

  24. 24.

    Swift, J. J. & Welch, W. J. A case study of low-mass star formation. Astrophys. J. Suppl. 174, 202–222 (2008).

    ADS  Article  Google Scholar 

  25. 25.

    Arce, H. G., Borkin, M. A., Goodman, A. A., Pineda, J. E. & Beaumont, C. N. A bubbling nearby molecular cloud: COMPLETE shells in Perseus. Astrophys. J. 742, 105–134 (2011).

    ADS  Article  Google Scholar 

  26. 26.

    Gendelev, L. & Krumholz, M. R. Evolution of Blister-type H II regions in a magnetized medium. Astrophys. J. 745, 158–169 (2012).

    ADS  Article  Google Scholar 

  27. 27.

    Federrath, C. On the universality of supersonic turbulence. Mon. Not. R. Astron. Soc. 436, 1245–1257 (2013).

    ADS  Article  Google Scholar 

  28. 28.

    Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W. & Mac Low, M.-M. Comparing the statistics of interstellar turbulence in simulations and observations. Solenoidal versus compressive turbulence forcing. Astron. Astrophys. 512, A81–A107 (2010).

    ADS  Article  Google Scholar 

  29. 29.

    Federrath, C. & Klessen, R. S. The star formation rate of turbulent magnetized clouds: comparing theory, simulations, and observations. Astrophys. J. 761, 156–187 (2012).

    ADS  Article  Google Scholar 

  30. 30.

    Offner, S. S. R. & Arce, H. G. Investigations of protostellar outflow launching and gas entrainment: hydrodynamic simulations and molecular emission. Astrophys. J. 784, 61–75 (2014).

    ADS  Article  Google Scholar 

  31. 31.

    Li, P. S., McKee, C. F. & Klein, R. I. Magnetized interstellar molecular clouds—I. Comparison between simulations and Zeeman observations. Mon. Not. R. Astron. Soc. 452, 2500–2527 (2015).

    ADS  Article  Google Scholar 

  32. 32.

    Truelove, J. K. et al. Self-gravitational hydrodynamics with three-dimensional adaptive mesh refinement: methodology and applications to molecular cloud collapse and fragmentation. Astrophys. J. 495, 821–852 (1998).

    ADS  Article  Google Scholar 

  33. 33.

    Klein, R. I. Star formation with 3-D adaptive mesh refinement: the collapse and fragmentation of molecular clouds. J. Comput. Appl. Math. 109, 123–152 (1999).

    ADS  Article  Google Scholar 

  34. 34.

    Krumholz, M. R., McKee, C. F. & Klein, R. I. Embedding Lagrangian sink particles in Eulerian grids. Astrophys. J. 611, 399–412 (2004).

    ADS  Article  Google Scholar 

  35. 35.

    Cunningham, A. J., Klein, R. I., Krumholz, M. R. & McKee, C. F. Radiation-hydrodynamic simulations of massive star formation with protostellar outflows. Astrophys. J. 740, 107–124 (2011).

    ADS  Article  Google Scholar 

  36. 36.

    Vink, J. S., de Koter, A. & Lamers, H. J. G. L. M. Mass-loss predictions for O and B stars as a function of metallicity. Astron. Astrophys. 369, 574–588 (2001).

    ADS  Article  Google Scholar 

  37. 37.

    Rosen, A. L., Krumholz, M. R., McKee, C. F. & Klein, R. I. An unstable truth: how massive stars get their mass. Mon. Not. R. Astron. Soc. 463, 2553–2573 (2016).

    ADS  Article  Google Scholar 

  38. 38.

    Xu, D. & Offner, S. S. R. Assessing the performance of a machine learning algorithm in identifying bubbles in dust emission. Astrophys. J. 851, 149–160 (2017).

    ADS  Article  Google Scholar 

  39. 39.

    Truelove, J. K. et al. The Jeans condition: a new constraint on spatial resolution in simulations of isothermal self-gravitational hydrodynamics. Astrophys. J. Lett. 489, L179–L183 (1997).

    ADS  Article  Google Scholar 

  40. 40.

    Koo, B.-C. & McKee, C. F. Dynamics of wind bubbles and superbubbles. I—slow winds and fast winds. II—analytic theory. Astrophys. J. 388, 93–126 (1992).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

S.S.R.O. thanks A. Lee, B. Gaches and P. Kumar for helpful comments. S.S.R.O. acknowledges support from NSF Career grant AST-1650486. The data analyses, images and animations were made possible by yt, an open-source Python package for analysing and visualizing volumetric data. Some of the simulations were performed on the Yale University Omega cluster, which is supported in part by the facilities and staff of the Yale University Faculty of Arts and Sciences High Performance Computing Center. The rest of the simulations were carried out on resources at the Massachusetts Green High Performance Computing Center, supported by staff at the University of Massachusetts.

Author information

Affiliations

Authors

Contributions

S.S.R.O. performed all the simulations without self-gravity, carried out the analyses, produced the figures and wrote the paper. Y.L. carried out the simulations with gravity and performed a preliminary analysis.

Corresponding author

Correspondence to Stella S. R. Offner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–2, Supplementary Figures 1–5, Supplementary Video 1 caption

Supplementary Video 1

Slices through the magnetic field strength for two sources in model W2T2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Offner, S.S.R., Liu, Y. Turbulent action at a distance due to stellar feedback in magnetized clouds. Nat Astron 2, 896–900 (2018). https://doi.org/10.1038/s41550-018-0566-1

Download citation

Further reading

Search

Quick links