Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The delay of shock breakout due to circumstellar material evident in most type II supernovae

An Author Correction to this article was published on 12 November 2018

Abstract

Type II supernovae (SNe II) originate from the explosion of hydrogen-rich supergiant massive stars. Their first electromagnetic signature is the shock breakout (SBO), a short-lived phenomenon that can last for hours to days depending on the density at shock emergence. We present 26 rising optical light curves of SN II candidates discovered shortly after explosion by the High Cadence Transient Survey and derive physical parameters based on hydrodynamical models using a Bayesian approach. We observe a steep rise of a few days in 24 out of 26 SN II candidates, indicating the systematic detection of SBOs in a dense circumstellar matter consistent with a mass loss rate of \(\dot M\) > 10−4M yr−1 or a dense atmosphere. This implies that the characteristic hour-timescale signature of stellar envelope SBOs may be rare in nature and could be delayed into longer-lived circumstellar material SBOs in most SNe II.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Light-curve-based classification implemented in this work.
Fig. 2: Observation minus template flux versus time for the SN II candidates.
Fig. 3: Interpolated synthetic absolute fluxes.
Fig. 4: Distribution of inferred β and \(\dot M\) values for the sample of 26 early SNe II candidates from HiTS, as well as selected SNe II from the literature with well-sampled optical early light curves (see Fig. 5).
Fig. 5: Interpolated synthetic absolute fluxes for the selected SNe II from the literature.

Similar content being viewed by others

References

  1. Law, N. M. et al. The Palomar Transient Factory: system overview, performance, and first results. Publ. Astron. Soc. Pac. 121, 1395–1408 (2009).

    Article  ADS  Google Scholar 

  2. Keller, S. C. et al. The SkyMapper Telescope and The Southern Sky Survey. Publ. Astron. Soc. Aus. 24, 1–12 (2007).

    Article  ADS  Google Scholar 

  3. Kaiser, N. et al. The Pan-STARRS wide-field optical/NIR imaging survey. Proc. SPIE 7733, 77330E (2010).

    Article  Google Scholar 

  4. Kim, S.-L. et al. Wide-field telescope design for the KMTNet project. Proc. SPIE 8151, 81511B (2011).

    Article  Google Scholar 

  5. Tonry, J. L. et al. ATLAS: a high-cadence all-sky survey system. Publ. Astron. Soc. Pac. 130, 064505 (2018).

    Article  ADS  Google Scholar 

  6. Flaugher, B. et al. The Dark Energy Camera. Astron. J. 150, 150 (2015).

    Article  ADS  Google Scholar 

  7. Takada, M. Subaru Hyper Suprime-Cam project. Proc. Am. Inst. Phys. Conf. 1279, 120 (2010).

    ADS  Google Scholar 

  8. Bellm, E. & Kulkarni, S. The unblinking eye on the sky. Nat. Astron. 1, 0071 (2017).

    Article  ADS  Google Scholar 

  9. LSST Science Collaboration, et al. LSST Science Book, Version 2.0. Preprint at http://arxiv.org/abs/0912.0201 (2009).

  10. Förster, F. et al. The High Cadence Transient Survey (HITS). I. Survey design and supernova shock breakout constraints. Astrophys. J. 832, 155 (2016).

    Article  ADS  Google Scholar 

  11. Smartt, S. J., Eldridge, J. J., Crockett, R. M. & Maund, J. R. The death of massive stars—I. Observational constraints on the progenitors of type II-P supernovae. Mon. Not. R. Astron. Soc. 395, 1409 (2009).

    Article  ADS  Google Scholar 

  12. Davies, B. & Beasor, E. R. The initial masses of the red supergiant progenitors to type II supernovae. Mon. Not. R. Astron. Soc. 474, 2116 (2018).

    Article  ADS  Google Scholar 

  13. Janka, H.-T., Melson, T. & Summa, A. Physics of core-collapse supernovae in three dimensions: a sneak preview. Annu. Rev. Nucl. Phys. 66, 341 (2016).

    Article  ADS  Google Scholar 

  14. Falk, S. W. Shock steepening and prompt thermal emission in supernovae. Astrophys. J. 225, L133 (1978).

    Article  ADS  Google Scholar 

  15. Ensman, L. & Burrows, A. Shock breakout in SN 1987A. Astrophys. J. 393, 742 (1992).

    Article  ADS  Google Scholar 

  16. Waxman, E. & Katz, B. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 967–1015 (Springer, Berlin, 2017).

  17. Tominaga, N. et al. Shock breakout in type II plateau supernovae: prospects for high-redshift supernova surveys. Astrophys. J. Suppl. Ser. 193, 20 (2011).

    Article  ADS  Google Scholar 

  18. Ofek, E. O. et al. Supernova PTF 09UJ: a possible shock breakout from a dense circumstellar wind. Astrophys. J. 724, 1396 (2010).

    Article  ADS  Google Scholar 

  19. Gezari, S. et al. GALEX detection of shock breakout in type IIP supernova PS1-13arp: implications for the progenitor star wind. Astrophys. J. 804, 28 (2015).

    Article  ADS  Google Scholar 

  20. Moriya, T. J., Yoon, S.-C., Gräfener, G. & Blinnikov, S. I. Immediate dense circumstellar environment of supernova progenitors caused by wind acceleration: its effect on supernova light curves. Mon. Not. R. Astron. Soc. 469, L108 (2017).

    Article  ADS  Google Scholar 

  21. Moriya, T. J., Förster, F., Yoon, S.-C., Gräfener, G. & Blinnikov, S. I. Type IIP supernova light curves affected by the acceleration of red supergiant winds. Mon. Not. R. Astron. Soc. 476, 2840 (2018).

    Article  ADS  Google Scholar 

  22. Yaron, O. et al. Confined dense circumstellar material surrounding a regular type II supernova. Nat. Phys. 13, 510 (2017).

    Article  Google Scholar 

  23. Dessart, L., John Hillier, D. & Audit, E. Explosion of red-supergiant stars: influence of the atmospheric structure on shock breakout and early-time supernova radiation. Astron. Astrophys. 605, A83 (2017).

    Article  ADS  Google Scholar 

  24. González-Gaitán, S. et al. The rise-time of type II supernovae. Mon. Not. R. Astron. Soc. 451, 2212 (2015).

    Article  ADS  Google Scholar 

  25. Rubin, A. & Gal-Yam, A. Unsupervised clustering of type II supernova light curves. Astrophys. J. 828, 111 (2016).

    Article  ADS  Google Scholar 

  26. Rubin, A. & Gal-Yam, A. Exploring the efficacy and limitations of shock-cooling models: new analysis of type II supernovae observed by the Kepler mission. Astrophys. J. 848, 8 (2017).

    Article  ADS  Google Scholar 

  27. Morozova, V., Piro, A. L. & Valenti, S. Unifying type II supernova light curves with dense circumstellar material. Astrophys. J. 838, 28 (2017).

    Article  ADS  Google Scholar 

  28. Schawinski, K. et al. Supernova shock breakout from a red supergiant. Science 321, 223–226 (2008).

    Article  ADS  Google Scholar 

  29. Gezari, S. et al. Probing shock breakout with serendipitous GALEX detections of two SNLS type II-P supernovae. Astrophys. J. 683, L131 (2008).

    Article  ADS  Google Scholar 

  30. Garnavich, P. M. et al. Shock breakout and early light curves of type II-P supernovae observed with Kepler. Astrophys. J. 820, 23 (2016).

    Article  ADS  Google Scholar 

  31. Ganot, N. et al. The detection rate of early UV emission from supernovae: a dedicated Galex/PTF survey and calibrated theoretical estimates. Astrophys. J. 820, 57 (2016).

    Article  ADS  Google Scholar 

  32. Tanaka, M. et al. Rapidly rising transients from the Subaru Hyper Suprime-Cam Transient Survey. Astrophys. J. 819, 5 (2016).

    Article  ADS  Google Scholar 

  33. Bersten, M. C. et al. A surge of light at the birth of a supernova. Nature 554, 497–499 (2018).

    Article  ADS  Google Scholar 

  34. Smartt, S. J. et al. PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astron. Astrophys. 579, A40 (2015).

    Article  Google Scholar 

  35. Lyman, J. D. et al. Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae. Mon. Not. R. Astron. Soc. 457, 328–350 (2016).

    Article  ADS  Google Scholar 

  36. Hsiao, E. Y. et al. K-corrections and spectral templates of type Ia supernovae. Astrophys. J. 663, 1187 (2007).

    Article  ADS  Google Scholar 

  37. Quimby, R. M. et al. SN 2006bp: probing the shock breakout of a type II-P supernova. Astrophys. J. 666, 1093 (2007).

    Article  ADS  Google Scholar 

  38. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).

    Article  ADS  Google Scholar 

  39. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).

    Article  ADS  Google Scholar 

  40. Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. Suppl. Ser. 220, 15 (2015).

    Article  ADS  Google Scholar 

  41. Puls, J. et al. O-star mass-loss and wind momentum rates in the Galaxy and the Magellanic Clouds observations and theoretical predictions. Astron. Astrophys. 305, 171 (1996).

    ADS  Google Scholar 

  42. Bennett, P. D. Chromospheres and winds of red supergiants: an empirical look at outer atmospheric structure. Astron. Soc. Pac. Conf. Ser. 425, 181 (2010).

    ADS  Google Scholar 

  43. Marshall, J. R. et al. Asymptotic giant branch superwind speed at low metallicity. Mon. Not. R. Astron. Soc. 355, 1348 (2004).

    Article  ADS  Google Scholar 

  44. Baade, R. et al. The wind outflow of Zeta Aurigae: a model revision using Hubble Space Telescope spectra. Astrophys. J. 466, 979 (1996).

    Article  ADS  Google Scholar 

  45. Mauron, N. & Josselin, E. The mass-loss rates of red supergiants and the de Jager prescription. Astron. Astrophys. 526, A156 (2011).

    Article  ADS  Google Scholar 

  46. Goldman, S. R. et al. The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity. Mon. Not. R. Astron. Soc. 465, 403 (2017).

    Article  ADS  Google Scholar 

  47. Morozova, V. & Stone, J. M. Theoretical X-ray light curves of young SNe II: the example of SN 2013ej. Preprint at http://arxiv.org/abs/1804.07312 (2018).

  48. Blinnikov, S. I., Eastman, R., Bartunov, O. S., Popolitov, V. A. & Woosley, S. E. A comparative modeling of Supernova 1993. Astrophys. J. 496, 454 (1998).

    Article  ADS  Google Scholar 

  49. Blinnikov, S., Lundqvist, P., Bartunov, O., Nomoto, K. & Iwamoto, K. Radiation hydrodynamics of SN 1987A. I. Global analysis of the light curve for the first 4 months. Astrophys. J. 532, 1132 (2000).

    Article  ADS  Google Scholar 

  50. Blinnikov, S. I. et al. Theoretical light curves for deflagration models of type Ia supernova. Astron. Astrophys. 453, 229 (2006).

    Article  ADS  Google Scholar 

  51. Gal-Yam, A. et al. A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature 509, 471–474 (2014).

    Article  ADS  Google Scholar 

  52. Groh, J. H. Early-time spectra of supernovae and their precursor winds. The luminous blue variable/yellow hypergiant progenitor of SN 2013cu. Astron. Astrophys. 572, L11 (2014).

    Article  ADS  Google Scholar 

  53. Gräfener, G. & Vink, J. S. Light-travel-time diagnostics in early supernova spectra: substantial mass-loss of the IIb progenitor of SN 2013cu through a superwind. Mon. Not. R. Astron. Soc. 455, 112 (2016).

    Article  ADS  Google Scholar 

  54. Schroeder, K.-P. A study of ultraviolet spectra of Zeta Aurigae/VV Cephei systems. VII—chromospheric density distribution and wind acceleration region. Astron. Astrophys. 147, 103 (1985).

    ADS  Google Scholar 

  55. Ohnaka, K., Weigelt, G. & Hofmann, K.-H. Vigorous atmospheric motion in the red supergiant star Antares. Nature 548, 310–312 (2017).

    Article  ADS  Google Scholar 

  56. Rodrguez, Ó., Clocchiatti, A. & Hamuy, M. Photospheric magnitude diagrams for type II supernovae: a promising tool to compute distances. Astron. J. 148, 107 (2014).

    Article  ADS  Google Scholar 

  57. Walton, N. et al. PESSTO spectroscopic classification of optical transients. The Astronomer’s Telegram 5957 (2014).

  58. Walton, N. et al. PESSTO spectroscopic classification of optical transients. T he Astronomer’s Telegram 5970 (2014).

  59. Le Guillou, L. et al. PESSTO spectroscopic classification of optical transients. T he Astronomer’s Telegram 7144 (2015).

  60. Baumont, S. et al. PESSTO spectroscopic classification of optical transients. T he Astronomer’s Telegram 7154 (2015).

  61. Forster, F. et al. Optical spectra of SNHiTS15al, SNHiTS15be, SNHiTS15bs and SNHiTS15by. T he Astronomer’s Telegram 7291 (2015).

  62. Pignata, G. et al. Optical spectroscopy of SNHiTS15aw. The Astronomer’s Telegram 7246 (2015).

  63. Anderson, J. et al. Optical spectrosopy of SNHiTS15ad (Gabriela). The Astronomer’s Telegram 7164, (2015).

  64. Anderson, J. et al. Optical spectrosopy of HiTS supernovae. The Astronomer’s Telegram 7335 (2015).

  65. Anderson, J. et al. FORS2 spectroscopic classification of DECam SN candidates. The Astronomer’s Telegram 6014 (2014).

  66. Anderson, J. et al. Optical spectroscopy of SNHiTS15D (Daniela) and SNHiTS15P (Rosemary). The Astronomer’s Telegram 7162 (2015).

  67. Blondin, S. & Tonry, J. L. Determining the type, redshift, and age of a supernova spectrum. Astrophys. J. 666, 1024 (2007).

    Article  ADS  Google Scholar 

  68. Mighell, K. J. CRBLASTER: a parallel-processing computational framework for embarrassingly parallel image-analysis algorithms. Publ. Astron. Soc. Pac. 122, 1236 (2010).

    Article  ADS  Google Scholar 

  69. Flewelling, H. A. et al. The Pan-STARRS1 database and data products. Preprint at http://arxiv.org/abs/1612.05243 (2016).

  70. Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Comm. Appl. Math. Comp. Sci. 5, 65 (2010).

    Article  MathSciNet  Google Scholar 

  71. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

  72. Silverman, B. W. Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability (Chapman and Hall, London, 1986).

  73. Hartigan, J. A. & Hartigan, P. M. The dip test of unimodality. Ann. Stat. 13, 70–84 (1985).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank L. Dessart, K. Maeda, Ph. Podsiadlowski and K. Pichara for useful discussions. F.F. and T.J.M. thank the Yukawa Institute for Theoretical Physics at Kyoto University, where part of this work was initiated during the YITP-T-16-05 on ‘Transient Universe in the Big Survey Era: Understanding the Nature of Astrophysical Explosive Phenomena’. T.J.M. is supported by the Grants-in-Aid for Scientific Research of the Japan Society for the Promotion of Science (16H07413 and 17H02864). The Powered@NLHPC research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02). Numerical computations were partially carried out on PC cluster at the Center for Computational Astrophysics, National Astronomical Observatory of Japan. We acknowledge support from Conicyt through the infrastructure Quimal project (number 140003). F.F., J.S.M., E.V. and S.G.-G. acknowledge support from Conicyt Basal fund AFB170001. F.F., G.C.-V., A.C., P.A.E., M.H., P. Huijse, H.K., J.M., G.M., F.O.E., G.P., A.R. and I.R. acknowledge support from the Ministry of Economy, Development and Tourism’s Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics. S.-C.Y. was supported by the Korea Astronomy and Space Science Institute under the research and development programme (project number 3348-20160002) supervised by the Ministry of Science, ICT and Future Planning and Monash Centre for Astrophysics via the distinguished visitor programme. E.Y.H. and C.A. acknowledge the support provided by the National Science Foundation under grant number AST-1613472 and the Florida Space Grant Consortium. F.F., J.M., G.M. and A.R. acknowledge support from Conicyt through Fondecyt project number 11130228. J.C.M., G.C-V., P.A.E., P. Huijse, H.K., G.P. and F.O.E. acknowledge support from Conicyt through Fondecyt project numbers 11170657, 3160747, 1171678, 3150460, 3140563, 1140352 and 11170953, respectively. G.M. and I.R. acknowledge support from CONICYT-PCHA/Magister Nacional/2016-22162353 and 2016-22162464, respectively. G.G. is supported by the Deutsche Forschungsgemeinschaft, grant number GR 1717/5. S.G.-G. acknowledges support from Comité Mixto ESO Chile project ORP 48/16. F.F., J.C.M., P. Huijse, G.C.-V. and P.A.E. acknowledge support from Conicyt through the Programme of International Cooperation project DPI20140090. L.G. was supported in part by the US National Science Foundation under grant AST-1311862. A.G.-Y. is supported by the EU via ERC grant number 725161, the Quantum Universe I-Core programme, the ISF, the BSF Transformative programme and a Kimmel award. M.F. is supported by the Royal Society–Science Foundation Ireland University Research Fellowship (reference 15/RS-URF/3304). S.B. acknowledges funding from project RSCF 18-12-00522. This study was based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 292.D-5042(A) and 094.D-0358(A). This work is partly based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of the PESSTO ESO programmes 188.D-3003, 191.D-0935 and 197.D-1075. It is partly based on observations obtained with the Gran Telescopio Canarias telescope. This project used data obtained with DECam, which was constructed by the Dark Energy Survey (DES) collaboration. Funding for the DES projects was provided by the US Department of Energy, US National Science Foundation, Ministry of Science and Education of Spain, Science and Technology Facilities Council of the United Kingdom, Higher Education Funding Council for England, National Center for Supercomputing Applications at the University of Illinois at Urbana–Champaign, Kavli Institute of Cosmological Physics at the University of Chicago, Center for Cosmology and AstroParticle Physics at The Ohio State University, Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério da Ciência, Tecnologia e Inovação, Deutsche Forschungsgemeinschaft and Collaborating Institutions in the DES. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas–Madrid, University of Chicago, University College London, DES–Brazil Consortium, University of Edinburgh, Eidgenössische Technische Hochschule Zürich, Fermi National Accelerator Laboratory, University of Illinois at Urbana–Champaign, Institut de Ciències de l’Espai, Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, Ludwig–Maximilians Universität München and the associated Excellence Cluster Universe, University of Michigan, National Optical Astronomy Observatory, University of Nottingham, Ohio State University, University of Pennsylvania, University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, University of Sussex and Texas A&M University.

Author information

Authors and Affiliations

Authors

Contributions

F.F. computed the SN light curves based on DECam data and performed the analyses, including writing the analysis software. T.J.M. computed the grid of SN models. F.F. and J.C.M. wrote the SN discovery pipeline. J.P.A., F.B., A.C., Th.d.J., L.G., S.G.-G., E.Y.H., H.K., J.M., G.M., F.O.E., G.P., R.C.S. and A.K.V. helped with photometric and spectroscopic observations under the HiTS programme. T.J.M., S.B., G.G. and S.-C.Y. computed the progenitor models. A.R. computed the light curve observations made with the du Pont telescope. G.C.-V., P.A.E., P.Huentelemu, P.Huijse, I.R. and J.S.M. helped develop the SN detection algorithms, including image processing, statistical methods and machine learning. R.C.S. and E.V. coordinated the fast data access required to achieve the real-time analysis and fast spectroscopic classifications. C.A., M.F., A.G.-Y., E.K., L.L.G., P.A.M., N.A.W. and D.R.Y. contributed to the PESSTO observations. A.d.U.P. contributed spectroscopic observations using the Gran Telescopio Canarias telescope. All co-authors contributed comments.

Corresponding author

Correspondence to F. Förster.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Supplementary Figures 1–8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Förster, F., Moriya, T.J., Maureira, J.C. et al. The delay of shock breakout due to circumstellar material evident in most type II supernovae. Nat Astron 2, 808–818 (2018). https://doi.org/10.1038/s41550-018-0563-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0563-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing