Abstract

Type II supernovae (SNe II) originate from the explosion of hydrogen-rich supergiant massive stars. Their first electromagnetic signature is the shock breakout (SBO), a short-lived phenomenon that can last for hours to days depending on the density at shock emergence. We present 26 rising optical light curves of SN II candidates discovered shortly after explosion by the High Cadence Transient Survey and derive physical parameters based on hydrodynamical models using a Bayesian approach. We observe a steep rise of a few days in 24 out of 26 SN II candidates, indicating the systematic detection of SBOs in a dense circumstellar matter consistent with a mass loss rate of \(\dot M\) > 10−4M yr−1 or a dense atmosphere. This implies that the characteristic hour-timescale signature of stellar envelope SBOs may be rare in nature and could be delayed into longer-lived circumstellar material SBOs in most SNe II.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Law, N. M. et al. The Palomar Transient Factory: system overview, performance, and first results. Publ. Astron. Soc. Pac. 121, 1395–1408 (2009).

  2. 2.

    Keller, S. C. et al. The SkyMapper Telescope and The Southern Sky Survey. Publ. Astron. Soc. Aus. 24, 1–12 (2007).

  3. 3.

    Kaiser, N. et al. The Pan-STARRS wide-field optical/NIR imaging survey. Proc. SPIE 7733, 77330E (2010).

  4. 4.

    Kim, S.-L. et al. Wide-field telescope design for the KMTNet project. Proc. SPIE 8151, 81511B (2011).

  5. 5.

    Tonry, J. L. et al. ATLAS: a high-cadence all-sky survey system. Publ. Astron. Soc. Pac. 130, 064505 (2018).

  6. 6.

    Flaugher, B. et al. The Dark Energy Camera. Astron. J. 150, 150 (2015).

  7. 7.

    Takada, M. Subaru Hyper Suprime-Cam project. Proc. Am. Inst. Phys. Conf. 1279, 120 (2010).

  8. 8.

    Bellm, E. & Kulkarni, S. The unblinking eye on the sky. Nat. Astron. 1, 0071 (2017).

  9. 9.

    LSST Science Collaboration, et al. LSST Science Book, Version 2.0. Preprint at http://arxiv.org/abs/0912.0201 (2009).

  10. 10.

    Förster, F. et al. The High Cadence Transient Survey (HITS). I. Survey design and supernova shock breakout constraints. Astrophys. J. 832, 155 (2016).

  11. 11.

    Smartt, S. J., Eldridge, J. J., Crockett, R. M. & Maund, J. R. The death of massive stars—I. Observational constraints on the progenitors of type II-P supernovae. Mon. Not. R. Astron. Soc. 395, 1409 (2009).

  12. 12.

    Davies, B. & Beasor, E. R. The initial masses of the red supergiant progenitors to type II supernovae. Mon. Not. R. Astron. Soc. 474, 2116 (2018).

  13. 13.

    Janka, H.-T., Melson, T. & Summa, A. Physics of core-collapse supernovae in three dimensions: a sneak preview. Annu. Rev. Nucl. Phys. 66, 341 (2016).

  14. 14.

    Falk, S. W. Shock steepening and prompt thermal emission in supernovae. Astrophys. J. 225, L133 (1978).

  15. 15.

    Ensman, L. & Burrows, A. Shock breakout in SN 1987A. Astrophys. J. 393, 742 (1992).

  16. 16.

    Waxman, E. & Katz, B. in Handbook of Supernovae (eds Alsabti, A. W. & Murdin, P.) 967–1015 (Springer, Berlin, 2017).

  17. 17.

    Tominaga, N. et al. Shock breakout in type II plateau supernovae: prospects for high-redshift supernova surveys. Astrophys. J. Suppl. Ser. 193, 20 (2011).

  18. 18.

    Ofek, E. O. et al. Supernova PTF 09UJ: a possible shock breakout from a dense circumstellar wind. Astrophys. J. 724, 1396 (2010).

  19. 19.

    Gezari, S. et al. GALEX detection of shock breakout in type IIP supernova PS1-13arp: implications for the progenitor star wind. Astrophys. J. 804, 28 (2015).

  20. 20.

    Moriya, T. J., Yoon, S.-C., Gräfener, G. & Blinnikov, S. I. Immediate dense circumstellar environment of supernova progenitors caused by wind acceleration: its effect on supernova light curves. Mon. Not. R. Astron. Soc. 469, L108 (2017).

  21. 21.

    Moriya, T. J., Förster, F., Yoon, S.-C., Gräfener, G. & Blinnikov, S. I. Type IIP supernova light curves affected by the acceleration of red supergiant winds. Mon. Not. R. Astron. Soc. 476, 2840 (2018).

  22. 22.

    Yaron, O. et al. Confined dense circumstellar material surrounding a regular type II supernova. Nat. Phys. 13, 510 (2017).

  23. 23.

    Dessart, L., John Hillier, D. & Audit, E. Explosion of red-supergiant stars: influence of the atmospheric structure on shock breakout and early-time supernova radiation. Astron. Astrophys. 605, A83 (2017).

  24. 24.

    González-Gaitán, S. et al. The rise-time of type II supernovae. Mon. Not. R. Astron. Soc. 451, 2212 (2015).

  25. 25.

    Rubin, A. & Gal-Yam, A. Unsupervised clustering of type II supernova light curves. Astrophys. J. 828, 111 (2016).

  26. 26.

    Rubin, A. & Gal-Yam, A. Exploring the efficacy and limitations of shock-cooling models: new analysis of type II supernovae observed by the Kepler mission. Astrophys. J. 848, 8 (2017).

  27. 27.

    Morozova, V., Piro, A. L. & Valenti, S. Unifying type II supernova light curves with dense circumstellar material. Astrophys. J. 838, 28 (2017).

  28. 28.

    Schawinski, K. et al. Supernova shock breakout from a red supergiant. Science 321, 223–226 (2008).

  29. 29.

    Gezari, S. et al. Probing shock breakout with serendipitous GALEX detections of two SNLS type II-P supernovae. Astrophys. J. 683, L131 (2008).

  30. 30.

    Garnavich, P. M. et al. Shock breakout and early light curves of type II-P supernovae observed with Kepler. Astrophys. J. 820, 23 (2016).

  31. 31.

    Ganot, N. et al. The detection rate of early UV emission from supernovae: a dedicated Galex/PTF survey and calibrated theoretical estimates. Astrophys. J. 820, 57 (2016).

  32. 32.

    Tanaka, M. et al. Rapidly rising transients from the Subaru Hyper Suprime-Cam Transient Survey. Astrophys. J. 819, 5 (2016).

  33. 33.

    Bersten, M. C. et al. A surge of light at the birth of a supernova. Nature 554, 497–499 (2018).

  34. 34.

    Smartt, S. J. et al. PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astron. Astrophys. 579, A40 (2015).

  35. 35.

    Lyman, J. D. et al. Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae. Mon. Not. R. Astron. Soc. 457, 328–350 (2016).

  36. 36.

    Hsiao, E. Y. et al. K-corrections and spectral templates of type Ia supernovae. Astrophys. J. 663, 1187 (2007).

  37. 37.

    Quimby, R. M. et al. SN 2006bp: probing the shock breakout of a type II-P supernova. Astrophys. J. 666, 1093 (2007).

  38. 38.

    Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA). Astrophys. J. Suppl. Ser. 192, 3 (2011).

  39. 39.

    Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. Ser. 208, 4 (2013).

  40. 40.

    Paxton, B. et al. Modules for experiments in stellar astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. Suppl. Ser. 220, 15 (2015).

  41. 41.

    Puls, J. et al. O-star mass-loss and wind momentum rates in the Galaxy and the Magellanic Clouds observations and theoretical predictions. Astron. Astrophys. 305, 171 (1996).

  42. 42.

    Bennett, P. D. Chromospheres and winds of red supergiants: an empirical look at outer atmospheric structure. Astron. Soc. Pac. Conf. Ser. 425, 181 (2010).

  43. 43.

    Marshall, J. R. et al. Asymptotic giant branch superwind speed at low metallicity. Mon. Not. R. Astron. Soc. 355, 1348 (2004).

  44. 44.

    Baade, R. et al. The wind outflow of Zeta Aurigae: a model revision using Hubble Space Telescope spectra. Astrophys. J. 466, 979 (1996).

  45. 45.

    Mauron, N. & Josselin, E. The mass-loss rates of red supergiants and the de Jager prescription. Astron. Astrophys. 526, A156 (2011).

  46. 46.

    Goldman, S. R. et al. The wind speeds, dust content, and mass-loss rates of evolved AGB and RSG stars at varying metallicity. Mon. Not. R. Astron. Soc. 465, 403 (2017).

  47. 47.

    Morozova, V. & Stone, J. M. Theoretical X-ray light curves of young SNe II: the example of SN 2013ej. Preprint at http://arxiv.org/abs/1804.07312 (2018).

  48. 48.

    Blinnikov, S. I., Eastman, R., Bartunov, O. S., Popolitov, V. A. & Woosley, S. E. A comparative modeling of Supernova 1993. Astrophys. J. 496, 454 (1998).

  49. 49.

    Blinnikov, S., Lundqvist, P., Bartunov, O., Nomoto, K. & Iwamoto, K. Radiation hydrodynamics of SN 1987A. I. Global analysis of the light curve for the first 4 months. Astrophys. J. 532, 1132 (2000).

  50. 50.

    Blinnikov, S. I. et al. Theoretical light curves for deflagration models of type Ia supernova. Astron. Astrophys. 453, 229 (2006).

  51. 51.

    Gal-Yam, A. et al. A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind. Nature 509, 471–474 (2014).

  52. 52.

    Groh, J. H. Early-time spectra of supernovae and their precursor winds. The luminous blue variable/yellow hypergiant progenitor of SN 2013cu. Astron. Astrophys. 572, L11 (2014).

  53. 53.

    Gräfener, G. & Vink, J. S. Light-travel-time diagnostics in early supernova spectra: substantial mass-loss of the IIb progenitor of SN 2013cu through a superwind. Mon. Not. R. Astron. Soc. 455, 112 (2016).

  54. 54.

    Schroeder, K.-P. A study of ultraviolet spectra of Zeta Aurigae/VV Cephei systems. VII—chromospheric density distribution and wind acceleration region. Astron. Astrophys. 147, 103 (1985).

  55. 55.

    Ohnaka, K., Weigelt, G. & Hofmann, K.-H. Vigorous atmospheric motion in the red supergiant star Antares. Nature 548, 310–312 (2017).

  56. 56.

    Rodrguez, Ó., Clocchiatti, A. & Hamuy, M. Photospheric magnitude diagrams for type II supernovae: a promising tool to compute distances. Astron. J. 148, 107 (2014).

  57. 57.

    Walton, N. et al. PESSTO spectroscopic classification of optical transients. The Astronomer’s Telegram 5957 (2014).

  58. 58.

    Walton, N. et al. PESSTO spectroscopic classification of optical transients. T he Astronomer’s Telegram 5970 (2014).

  59. 59.

    Le Guillou, L. et al. PESSTO spectroscopic classification of optical transients. T he Astronomer’s Telegram 7144 (2015).

  60. 60.

    Baumont, S. et al. PESSTO spectroscopic classification of optical transients. T he Astronomer’s Telegram 7154 (2015).

  61. 61.

    Forster, F. et al. Optical spectra of SNHiTS15al, SNHiTS15be, SNHiTS15bs and SNHiTS15by. T he Astronomer’s Telegram 7291 (2015).

  62. 62.

    Pignata, G. et al. Optical spectroscopy of SNHiTS15aw. The Astronomer’s Telegram 7246 (2015).

  63. 63.

    Anderson, J. et al. Optical spectrosopy of SNHiTS15ad (Gabriela). The Astronomer’s Telegram 7164, (2015).

  64. 64.

    Anderson, J. et al. Optical spectrosopy of HiTS supernovae. The Astronomer’s Telegram 7335 (2015).

  65. 65.

    Anderson, J. et al. FORS2 spectroscopic classification of DECam SN candidates. The Astronomer’s Telegram 6014 (2014).

  66. 66.

    Anderson, J. et al. Optical spectroscopy of SNHiTS15D (Daniela) and SNHiTS15P (Rosemary). The Astronomer’s Telegram 7162 (2015).

  67. 67.

    Blondin, S. & Tonry, J. L. Determining the type, redshift, and age of a supernova spectrum. Astrophys. J. 666, 1024 (2007).

  68. 68.

    Mighell, K. J. CRBLASTER: a parallel-processing computational framework for embarrassingly parallel image-analysis algorithms. Publ. Astron. Soc. Pac. 122, 1236 (2010).

  69. 69.

    Flewelling, H. A. et al. The Pan-STARRS1 database and data products. Preprint at http://arxiv.org/abs/1612.05243 (2016).

  70. 70.

    Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Comm. Appl. Math. Comp. Sci. 5, 65 (2010).

  71. 71.

    Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

  72. 72.

    Silverman, B. W. Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability (Chapman and Hall, London, 1986).

  73. 73.

    Hartigan, J. A. & Hartigan, P. M. The dip test of unimodality. Ann. Stat. 13, 70–84 (1985).

Download references

Acknowledgements

We thank L. Dessart, K. Maeda, Ph. Podsiadlowski and K. Pichara for useful discussions. F.F. and T.J.M. thank the Yukawa Institute for Theoretical Physics at Kyoto University, where part of this work was initiated during the YITP-T-16-05 on ‘Transient Universe in the Big Survey Era: Understanding the Nature of Astrophysical Explosive Phenomena’. T.J.M. is supported by the Grants-in-Aid for Scientific Research of the Japan Society for the Promotion of Science (16H07413 and 17H02864). The Powered@NLHPC research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02). Numerical computations were partially carried out on PC cluster at the Center for Computational Astrophysics, National Astronomical Observatory of Japan. We acknowledge support from Conicyt through the infrastructure Quimal project (number 140003). F.F., J.S.M., E.V. and S.G.-G. acknowledge support from Conicyt Basal fund AFB170001. F.F., G.C.-V., A.C., P.A.E., M.H., P. Huijse, H.K., J.M., G.M., F.O.E., G.P., A.R. and I.R. acknowledge support from the Ministry of Economy, Development and Tourism’s Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics. S.-C.Y. was supported by the Korea Astronomy and Space Science Institute under the research and development programme (project number 3348-20160002) supervised by the Ministry of Science, ICT and Future Planning and Monash Centre for Astrophysics via the distinguished visitor programme. E.Y.H. and C.A. acknowledge the support provided by the National Science Foundation under grant number AST-1613472 and the Florida Space Grant Consortium. F.F., J.M., G.M. and A.R. acknowledge support from Conicyt through Fondecyt project number 11130228. J.C.M., G.C-V., P.A.E., P. Huijse, H.K., G.P. and F.O.E. acknowledge support from Conicyt through Fondecyt project numbers 11170657, 3160747, 1171678, 3150460, 3140563, 1140352 and 11170953, respectively. G.M. and I.R. acknowledge support from CONICYT-PCHA/Magister Nacional/2016-22162353 and 2016-22162464, respectively. G.G. is supported by the Deutsche Forschungsgemeinschaft, grant number GR 1717/5. S.G.-G. acknowledges support from Comité Mixto ESO Chile project ORP 48/16. F.F., J.C.M., P. Huijse, G.C.-V. and P.A.E. acknowledge support from Conicyt through the Programme of International Cooperation project DPI20140090. L.G. was supported in part by the US National Science Foundation under grant AST-1311862. A.G.-Y. is supported by the EU via ERC grant number 725161, the Quantum Universe I-Core programme, the ISF, the BSF Transformative programme and a Kimmel award. M.F. is supported by the Royal Society–Science Foundation Ireland University Research Fellowship (reference 15/RS-URF/3304). S.B. acknowledges funding from project RSCF 18-12-00522. This study was based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 292.D-5042(A) and 094.D-0358(A). This work is partly based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile as part of the PESSTO ESO programmes 188.D-3003, 191.D-0935 and 197.D-1075. It is partly based on observations obtained with the Gran Telescopio Canarias telescope. This project used data obtained with DECam, which was constructed by the Dark Energy Survey (DES) collaboration. Funding for the DES projects was provided by the US Department of Energy, US National Science Foundation, Ministry of Science and Education of Spain, Science and Technology Facilities Council of the United Kingdom, Higher Education Funding Council for England, National Center for Supercomputing Applications at the University of Illinois at Urbana–Champaign, Kavli Institute of Cosmological Physics at the University of Chicago, Center for Cosmology and AstroParticle Physics at The Ohio State University, Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministério da Ciência, Tecnologia e Inovação, Deutsche Forschungsgemeinschaft and Collaborating Institutions in the DES. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas–Madrid, University of Chicago, University College London, DES–Brazil Consortium, University of Edinburgh, Eidgenössische Technische Hochschule Zürich, Fermi National Accelerator Laboratory, University of Illinois at Urbana–Champaign, Institut de Ciències de l’Espai, Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, Ludwig–Maximilians Universität München and the associated Excellence Cluster Universe, University of Michigan, National Optical Astronomy Observatory, University of Nottingham, Ohio State University, University of Pennsylvania, University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, University of Sussex and Texas A&M University.

Author information

Affiliations

  1. Center for Mathematical Modeling, University of Chile, Santiago, Chile

    • F. Förster
    • , J. C. Maureira
    • , S. González-Gaitán
    • , J. Martínez
    • , J. San Martín
    •  & E. Vera
  2. Millennium Institute of Astrophysics, Santiago, Chile

    • F. Förster
    • , G. Cabrera-Vives
    • , A. Clocchiatti
    • , P. A. Estévez
    • , M. Hamuy
    • , P. Huijse
    • , J. Martínez
    • , F. Olivares E.
    • , G. Pignata
    •  & I. Reyes
  3. Department of Astronomy, University of Chile, Santiago, Chile

    • F. Förster
    • , M. Hamuy
    • , J. Martínez
    • , G. Medina
    • , F. Olivares E.
    •  & A. Razza
  4. Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Tokyo, Japan

    • T. J. Moriya
  5. European Southern Observatory, Santiago, Chile

    • J. P. Anderson
    •  & A. Razza
  6. Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Tokyo, Japan

    • S. Blinnikov
  7. Institute for Theoretical and Experimental Physics, Moscow, Russia

    • S. Blinnikov
  8. All-Russia Research Institute of Automatics, Moscow, Russia

    • S. Blinnikov
  9. INAF Catania Astrophysical Observatory, Catania, Italy

    • F. Bufano
  10. Department of Computer Science, University of Concepción, Concepción, Chile

    • G. Cabrera-Vives
  11. Department of Physics and Astronomy, Universidad Católica de Chile, Santiago, Chile

    • A. Clocchiatti
  12. Department of Astronomy, University of California, Berkeley, Berkeley, USA

    • T. de Jaeger
  13. Department of Electrical Engineering, University of Chile, Santiago, Chile

    • P. A. Estévez
    • , P. Huentelemu
    • , P. Huijse
    •  & I. Reyes
  14. Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA

    • L. Galbany
  15. CENTRA, Instituto Técnico Superior, Universidade de Lisboa, Lisbon, Portugal

    • S. González-Gaitán
  16. Argelander-Institut fur Astronomie, Bonn, Germany

    • G. Gräfener
  17. Department of Physics, Florida State University, Tallahassee, FL, USA

    • E. Y. Hsiao
  18. Instituto de Informática, Universidad Austral de Chile, Valdivia, Chile

    • P. Huijse
  19. Finnish Centre for Astronomy with ESO, University of Turku, Turku, Finland

    • H. Kuncarayakti
  20. Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Turku, Finland

    • H. Kuncarayakti
  21. Departamento de Ciencias Fisicas, Universidad Andres Bello, Santiago, Chile

    • G. Pignata
  22. Cerro Tololo Interamerican Observatory, La Serena, Chile

    • R. C. Smith
    •  & A. K. Vivas
  23. CSIC Instituto de Astrofísica de Andalucía, Granada, Spain

    • A. de Ugarte Postigo
  24. Dark Cosmology Centre, Niels Borh Institute, University of Copenhagen, Copenhagen, Denmark

    • A. de Ugarte Postigo
  25. Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea

    • S.-C. Yoon
  26. Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Melbourne, Australia

    • S.-C. Yoon
  27. Astrophysics Research Institute, Liverpool John Moores University, Liverpool, UK

    • C. Ashall
    •  & P. A. Mazzali
  28. School of Physics, O’Brien Centre for Science, University College Dublin, Dublin, Ireland

    • M. Fraser
  29. Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel

    • A. Gal-Yam
  30. Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast, UK

    • E. Kankare
    •  & D. R. Young
  31. Sorbonne Université, Université Paris Diderot, CNRS, IN2P3, UMR 7585, LPNHE, Paris, France

    • L. Le Guillou
  32. Max-Planck-Institut fur Astrophysik, Garching bei Munchen, Germany

    • P. A. Mazzali
  33. Institute of Astronomy, University of Cambridge, Cambridge, UK

    • N. A. Walton

Authors

  1. Search for F. Förster in:

  2. Search for T. J. Moriya in:

  3. Search for J. C. Maureira in:

  4. Search for J. P. Anderson in:

  5. Search for S. Blinnikov in:

  6. Search for F. Bufano in:

  7. Search for G. Cabrera-Vives in:

  8. Search for A. Clocchiatti in:

  9. Search for T. de Jaeger in:

  10. Search for P. A. Estévez in:

  11. Search for L. Galbany in:

  12. Search for S. González-Gaitán in:

  13. Search for G. Gräfener in:

  14. Search for M. Hamuy in:

  15. Search for E. Y. Hsiao in:

  16. Search for P. Huentelemu in:

  17. Search for P. Huijse in:

  18. Search for H. Kuncarayakti in:

  19. Search for J. Martínez in:

  20. Search for G. Medina in:

  21. Search for F. Olivares E. in:

  22. Search for G. Pignata in:

  23. Search for A. Razza in:

  24. Search for I. Reyes in:

  25. Search for J. San Martín in:

  26. Search for R. C. Smith in:

  27. Search for E. Vera in:

  28. Search for A. K. Vivas in:

  29. Search for A. de Ugarte Postigo in:

  30. Search for S.-C. Yoon in:

  31. Search for C. Ashall in:

  32. Search for M. Fraser in:

  33. Search for A. Gal-Yam in:

  34. Search for E. Kankare in:

  35. Search for L. Le Guillou in:

  36. Search for P. A. Mazzali in:

  37. Search for N. A. Walton in:

  38. Search for D. R. Young in:

Contributions

F.F. computed the SN light curves based on DECam data and performed the analyses, including writing the analysis software. T.J.M. computed the grid of SN models. F.F. and J.C.M. wrote the SN discovery pipeline. J.P.A., F.B., A.C., Th.d.J., L.G., S.G.-G., E.Y.H., H.K., J.M., G.M., F.O.E., G.P., R.C.S. and A.K.V. helped with photometric and spectroscopic observations under the HiTS programme. T.J.M., S.B., G.G. and S.-C.Y. computed the progenitor models. A.R. computed the light curve observations made with the du Pont telescope. G.C.-V., P.A.E., P.Huentelemu, P.Huijse, I.R. and J.S.M. helped develop the SN detection algorithms, including image processing, statistical methods and machine learning. R.C.S. and E.V. coordinated the fast data access required to achieve the real-time analysis and fast spectroscopic classifications. C.A., M.F., A.G.-Y., E.K., L.L.G., P.A.M., N.A.W. and D.R.Y. contributed to the PESSTO observations. A.d.U.P. contributed spectroscopic observations using the Gran Telescopio Canarias telescope. All co-authors contributed comments.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to F. Förster.

Supplementary information

  1. Supplementary Information

    Supplementary Tables 1–3, Supplementary Figures 1–8

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41550-018-0563-4