The mass of the young planet Beta Pictoris b through the astrometric motion of its host star

Abstract

The young massive Jupiters discovered with high-contrast imaging1,2,3,4 provide a unique opportunity to study the formation and early evolution of gas giant planets. A key question is to what extent gravitational energy from accreted gas contributes to the internal energy of a newly formed planet. This has led to a range of formation scenarios from ‘cold’ to ‘hot’ start models5,6,7,8. For a planet of a given mass, these initial conditions govern its subsequent evolution in luminosity and radius. Except for upper limits from radial velocity studies9,10, disk modelling11 and dynamical instability arguments12, no mass measurements of young planets are yet available to distinguish between these different models. Here, we report on the detection of the astrometric motion of Beta Pictoris, the ~21-Myr-old host star of an archetypical directly imaged gas giant planet, around the system’s centre of mass. Subtracting the highly accurate Hipparcos13,14 and Gaia15,16 proper motion from the internal 3 yr Hipparcos astrometric data reveals the reflex motion of the star, giving a model-independent planet mass of 11 ± 2 Jupiter masses. This is consistent with scenarios in which the planet is formed in a high-entropy state as assumed by hot start models. The ongoing data collection by Gaia will soon lead to mass measurements of other young gas giants and form a great asset to further constrain early-evolution scenarios.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The astrometric motion of the young star β Pic as shown by the Hipparcos data (1990–1993).
Fig. 2: The heliocentric Hipparcos positional data after subtraction of the 24 yr Hipparcos–Gaia baseline.
Fig. 3: Constraints on the mass and orbital period of the young exoplanet β Pic b.

References

  1. 1.

    Marois, C. et al. Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348–1352 (2008).

    ADS  Article  Google Scholar 

  2. 2.

    Lagrange, A.-M. et al. A probable giant planet imaged in the β Pictoris disk. VLT/NaCo deep L′-band imaging. Astron. Astrophys. 493, L21–L25 (2009).

    ADS  Article  Google Scholar 

  3. 3.

    Lagrange, A.-M. et al. A giant planet imaged in the disk of the young star β Pictoris. Science 329, 57–59 (2010).

    ADS  Article  Google Scholar 

  4. 4.

    Macintosh, B. et al. Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager. Science 350, 64–67 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Chabrier, G., Baraffe, I., Allard, F. & Hauschildt, P. Evolutionary models for very low-mass stars and brown dwarfs with dusty atmospheres. Astrophys. J. 542, 464–472 (2000).

    ADS  Article  Google Scholar 

  6. 6.

    Baraffe, I., Chabrier, G., Barman, T. S., Allard, F. & Hauschildt, P. H. Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458. Astron. Astrophys. 402, 701–712 (2003).

    ADS  Article  Google Scholar 

  7. 7.

    Marley, M. S., Fortney, J. J., Hubickyj, O., Bodenheimer, P. & Lissauer, J. J. On the luminosity of young Jupiters. Astrophys. J. 655, 541–549 (2007).

    ADS  Article  Google Scholar 

  8. 8.

    Spiegel, D. S. & Burrows, A. Spectral and photometric diagnostics of giant planet formation scenarios. Astrophys. J. 745, 174 (2012).

    ADS  Article  Google Scholar 

  9. 9.

    Lagrange, A.-M. et al. Constraints on planets around β Pic with Harps radial velocity data. Astron. Astrophys. 542, A18 (2012).

    Article  Google Scholar 

  10. 10.

    Lagrange, A.-M. et al. Full exploration of the giant planet population around β Pictoris. Astron. Astrophys. 612, A108 (2018).

    Article  Google Scholar 

  11. 11.

    Mouillet, D., Larwood, J. D., Papaloizou, J. C. B. & Lagrange, A. M. A planet on an inclined orbit as an explanation of the warp in the β Pictoris disc. Mon. Not. R. Astron. Soc. 292, 896–904 (1997).

    ADS  Article  Google Scholar 

  12. 12.

    Fabrycky, D. C. & Murray-Clay, R. A. Stability of the directly imaged multiplanet system HR 8799: resonance and masses. Astrophys. J. 710, 1408–1421 (2010).

    ADS  Article  Google Scholar 

  13. 13.

    Perryman, M. A. C. et al. The HIPPARCOS catalogue. Astron. Astrophys. 323, L49–L52 (1997).

    ADS  Google Scholar 

  14. 14.

    van Leeuwen, F. Validation of the new Hipparcos reduction. Astron. Astrophys. 474, 653–664 (2007).

    ADS  Article  Google Scholar 

  15. 15.

    Gaia Collaboration. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Article  Google Scholar 

  16. 16.

    Gaia Collaboration. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. (in the press).

  17. 17.

    Science Performance (European Space Agency, 2018); https://www.cosmos.esa.int/web/gaia/science-performance

  18. 18.

    Wang, J. J. et al. The orbit and transit prospects for β Pictoris b constrained with one milliarcsecond astrometry. Astron. J. 152, 97 (2016).

    ADS  Article  Google Scholar 

  19. 19.

    Chauvin, G. et al. Orbital characterization of the β Pictoris b giant planet. Astron. Astrophys. 542, A41 (2012).

    Article  Google Scholar 

  20. 20.

    Nielsen, E. L. et al. The Gemini NICI Planet-Finding Campaign: the orbit of the young exoplanet β Pictoris b. Astrophys. J. 794, 158 (2014).

    ADS  Article  Google Scholar 

  21. 21.

    Zuckerman, B., Song, I., Bessell, M. S. & Webb, R. A. The β Pictoris moving group. Astrophys. J. 562, L87–L90 (2001).

    ADS  Article  Google Scholar 

  22. 22.

    Ortega, V. G., de la Reza, R., Jilinski, E. & Bazzanella, B. The origin of the β Pictoris moving group. Astrophys. J. 575, L75–L78 (2002).

    ADS  Article  Google Scholar 

  23. 23.

    Mamajek, E. E. & Bell, C. P. M. On the age of the β Pictoris moving group. Mon. Not. R. Astron. Soc. 445, 2169–2180 (2014).

    ADS  Article  Google Scholar 

  24. 24.

    Binks, A. S. & Jeffries, R. D. A lithium depletion boundary age of 21 Myr for the Beta Pictoris moving group. Mon. Not. R. Astron. Soc. 438, L11–L15 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Currie, T. et al. A combined Very Large Telescope and Gemini study of the atmosphere of the directly imaged planet, β Pictoris b. Astrophys. J. 776, 15 (2013).

    ADS  Article  Google Scholar 

  26. 26.

    Bonnefoy, M. et al. The near-infrared spectral energy distribution of β Pictoris b. Astron. Astrophys. 555, A107 (2013).

    Article  Google Scholar 

  27. 27.

    Chilcote, J. et al. 1–2.4 μm near-IR spectrum of the giant planet β Pictoris b obtained with the Gemini Planet Imager. Astron. J. 153, 182 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Michalik, D., Lindegren, L., Hobbs, D. & Lammers, U. Joint astrometric solution of HIPPARCOS and Gaia. A recipe for the Hundred Thousand Proper Motions project. Astron. Astrophys. 571, A85 (2014).

    ADS  Article  Google Scholar 

  29. 29.

    Perryman, M., Hartman, J., Bakos, G. Á. & Lindegren, L. Astrometric exoplanet detection with Gaia. Astrophys. J. 797, 14 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    make_parallax_coords (NASA/IPAC, accessed 1 March 2018); https://irsa.ipac.caltech.edu/data/SPITZER/docs/dataanalysistools/tools/contributed/general/make_parallax_coords/

  31. 31.

    Crifo, F., Vidal-Madjar, A., Lallement, R., Ferlet, R. & Gerbaldi, M. β Pictoris revisited by Hipparcos. Star properties. Astron. Astrophys. 320, L29–L32 (1997).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was only possible because numerous scientists and engineers have devoted large parts of their careers to the design, construction and successful operation of the Hipparcos and Gaia missions and the analysis of their data. We are grateful. We thank F. van Leeuwen also for discussions on his analysis of the Hipparcos data. This work has made use of data from the European Space Agency mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. I.A.G.S. acknowledges funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 694513. A.G.A.B. acknowledges funding from the Netherlands Research School for Astronomy (NOVA).

Author information

Affiliations

Authors

Contributions

I.A.G.S. devised the general idea, conducted the main analysis and wrote a first version of the manuscript. A.G.A.B. contributed to the implementation and optimization of the analysis, including important details on the Gaia and Hipparcos data, and commented on the manuscript.

Corresponding author

Correspondence to I. A. G. Snellen.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figure 1, Supplementary Table 1

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Snellen, I.A.G., Brown, A.G.A. The mass of the young planet Beta Pictoris b through the astrometric motion of its host star. Nat Astron 2, 883–886 (2018). https://doi.org/10.1038/s41550-018-0561-6

Download citation

Further reading