Letter | Published:

The mass of the young planet Beta Pictoris b through the astrometric motion of its host star

Nature Astronomyvolume 2pages883886 (2018) | Download Citation


The young massive Jupiters discovered with high-contrast imaging1,2,3,4 provide a unique opportunity to study the formation and early evolution of gas giant planets. A key question is to what extent gravitational energy from accreted gas contributes to the internal energy of a newly formed planet. This has led to a range of formation scenarios from ‘cold’ to ‘hot’ start models5,6,7,8. For a planet of a given mass, these initial conditions govern its subsequent evolution in luminosity and radius. Except for upper limits from radial velocity studies9,10, disk modelling11 and dynamical instability arguments12, no mass measurements of young planets are yet available to distinguish between these different models. Here, we report on the detection of the astrometric motion of Beta Pictoris, the ~21-Myr-old host star of an archetypical directly imaged gas giant planet, around the system’s centre of mass. Subtracting the highly accurate Hipparcos13,14 and Gaia15,16 proper motion from the internal 3 yr Hipparcos astrometric data reveals the reflex motion of the star, giving a model-independent planet mass of 11 ± 2 Jupiter masses. This is consistent with scenarios in which the planet is formed in a high-entropy state as assumed by hot start models. The ongoing data collection by Gaia will soon lead to mass measurements of other young gas giants and form a great asset to further constrain early-evolution scenarios.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Marois, C. et al. Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348–1352 (2008).

  2. 2.

    Lagrange, A.-M. et al. A probable giant planet imaged in the β Pictoris disk. VLT/NaCo deep L′-band imaging. Astron. Astrophys. 493, L21–L25 (2009).

  3. 3.

    Lagrange, A.-M. et al. A giant planet imaged in the disk of the young star β Pictoris. Science 329, 57–59 (2010).

  4. 4.

    Macintosh, B. et al. Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager. Science 350, 64–67 (2015).

  5. 5.

    Chabrier, G., Baraffe, I., Allard, F. & Hauschildt, P. Evolutionary models for very low-mass stars and brown dwarfs with dusty atmospheres. Astrophys. J. 542, 464–472 (2000).

  6. 6.

    Baraffe, I., Chabrier, G., Barman, T. S., Allard, F. & Hauschildt, P. H. Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458. Astron. Astrophys. 402, 701–712 (2003).

  7. 7.

    Marley, M. S., Fortney, J. J., Hubickyj, O., Bodenheimer, P. & Lissauer, J. J. On the luminosity of young Jupiters. Astrophys. J. 655, 541–549 (2007).

  8. 8.

    Spiegel, D. S. & Burrows, A. Spectral and photometric diagnostics of giant planet formation scenarios. Astrophys. J. 745, 174 (2012).

  9. 9.

    Lagrange, A.-M. et al. Constraints on planets around β Pic with Harps radial velocity data. Astron. Astrophys. 542, A18 (2012).

  10. 10.

    Lagrange, A.-M. et al. Full exploration of the giant planet population around β Pictoris. Astron. Astrophys. 612, A108 (2018).

  11. 11.

    Mouillet, D., Larwood, J. D., Papaloizou, J. C. B. & Lagrange, A. M. A planet on an inclined orbit as an explanation of the warp in the β Pictoris disc. Mon. Not. R. Astron. Soc. 292, 896–904 (1997).

  12. 12.

    Fabrycky, D. C. & Murray-Clay, R. A. Stability of the directly imaged multiplanet system HR 8799: resonance and masses. Astrophys. J. 710, 1408–1421 (2010).

  13. 13.

    Perryman, M. A. C. et al. The HIPPARCOS catalogue. Astron. Astrophys. 323, L49–L52 (1997).

  14. 14.

    van Leeuwen, F. Validation of the new Hipparcos reduction. Astron. Astrophys. 474, 653–664 (2007).

  15. 15.

    Gaia Collaboration. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

  16. 16.

    Gaia Collaboration. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. (in the press).

  17. 17.

    Science Performance (European Space Agency, 2018); https://www.cosmos.esa.int/web/gaia/science-performance

  18. 18.

    Wang, J. J. et al. The orbit and transit prospects for β Pictoris b constrained with one milliarcsecond astrometry. Astron. J. 152, 97 (2016).

  19. 19.

    Chauvin, G. et al. Orbital characterization of the β Pictoris b giant planet. Astron. Astrophys. 542, A41 (2012).

  20. 20.

    Nielsen, E. L. et al. The Gemini NICI Planet-Finding Campaign: the orbit of the young exoplanet β Pictoris b. Astrophys. J. 794, 158 (2014).

  21. 21.

    Zuckerman, B., Song, I., Bessell, M. S. & Webb, R. A. The β Pictoris moving group. Astrophys. J. 562, L87–L90 (2001).

  22. 22.

    Ortega, V. G., de la Reza, R., Jilinski, E. & Bazzanella, B. The origin of the β Pictoris moving group. Astrophys. J. 575, L75–L78 (2002).

  23. 23.

    Mamajek, E. E. & Bell, C. P. M. On the age of the β Pictoris moving group. Mon. Not. R. Astron. Soc. 445, 2169–2180 (2014).

  24. 24.

    Binks, A. S. & Jeffries, R. D. A lithium depletion boundary age of 21 Myr for the Beta Pictoris moving group. Mon. Not. R. Astron. Soc. 438, L11–L15 (2014).

  25. 25.

    Currie, T. et al. A combined Very Large Telescope and Gemini study of the atmosphere of the directly imaged planet, β Pictoris b. Astrophys. J. 776, 15 (2013).

  26. 26.

    Bonnefoy, M. et al. The near-infrared spectral energy distribution of β Pictoris b. Astron. Astrophys. 555, A107 (2013).

  27. 27.

    Chilcote, J. et al. 1–2.4 μm near-IR spectrum of the giant planet β Pictoris b obtained with the Gemini Planet Imager. Astron. J. 153, 182 (2017).

  28. 28.

    Michalik, D., Lindegren, L., Hobbs, D. & Lammers, U. Joint astrometric solution of HIPPARCOS and Gaia. A recipe for the Hundred Thousand Proper Motions project. Astron. Astrophys. 571, A85 (2014).

  29. 29.

    Perryman, M., Hartman, J., Bakos, G. Á. & Lindegren, L. Astrometric exoplanet detection with Gaia. Astrophys. J. 797, 14 (2014).

  30. 30.

    make_parallax_coords (NASA/IPAC, accessed 1 March 2018); https://irsa.ipac.caltech.edu/data/SPITZER/docs/dataanalysistools/tools/contributed/general/make_parallax_coords/

  31. 31.

    Crifo, F., Vidal-Madjar, A., Lallement, R., Ferlet, R. & Gerbaldi, M. β Pictoris revisited by Hipparcos. Star properties. Astron. Astrophys. 320, L29–L32 (1997).

Download references


This work was only possible because numerous scientists and engineers have devoted large parts of their careers to the design, construction and successful operation of the Hipparcos and Gaia missions and the analysis of their data. We are grateful. We thank F. van Leeuwen also for discussions on his analysis of the Hipparcos data. This work has made use of data from the European Space Agency mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. I.A.G.S. acknowledges funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 694513. A.G.A.B. acknowledges funding from the Netherlands Research School for Astronomy (NOVA).

Author information


  1. Leiden Observatory, Leiden University, Leiden, Netherlands

    • I. A. G. Snellen
    •  & A. G. A. Brown


  1. Search for I. A. G. Snellen in:

  2. Search for A. G. A. Brown in:


I.A.G.S. devised the general idea, conducted the main analysis and wrote a first version of the manuscript. A.G.A.B. contributed to the implementation and optimization of the analysis, including important details on the Gaia and Hipparcos data, and commented on the manuscript.

Competing interests

The authors declare no competing interests

Corresponding author

Correspondence to I. A. G. Snellen.

Supplementary information

  1. Supplementary Information

    Supplementary Figure 1, Supplementary Table 1

About this article

Publication history