Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dark matter self-interactions from the internal dynamics of dwarf spheroidals

Abstract

Dwarf spheroidal galaxies provide well-known challenges to the standard cold and collisionless dark matter scenario1,2: the too-big-to-fail problem (namely the mismatch between the observed mass enclosed within their half-light radius3,4 and cold dark matter N-body predictions5,6) and the hints for inner constant-density cores7,8,9,10. While these controversies may be alleviated by baryonic physics and environmental effects11,12,13,14,15, revisiting the standard lore of cold and collisionless dark matter remains an intriguing possibility. Self-interacting dark matter16,17 may be the successful proposal to such a small-scale crisis18,19. Self-interactions correlate dark matter and baryon distributions, allowing for constant-density cores in low-surface-brightness galaxies20,21,22,23. Here, we perform a data-driven study of the too-big-to-fail problem of Milky Way dwarf spheroidals within the self-interacting dark matter paradigm. We find a good description of their stellar kinematics and compatibility with the concentration–mass relation from the pure cold dark matter simulation in ref. 24. Within this concentration–mass relation, a subset of Milky Way dwarfs are well fitted by cross-sections of 0.5–3.0 cm2 g−1, while others point to values greater than 10 cm2 g−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Line-of-sight velocity dispersion profiles for the classical dwarf satellites from the joint fit of the stellar kinematics and the CDM concentration–mass relation.
Fig. 2: Circular velocity profiles obtained from the Bayesian analysis of the seven-parameter SIDM model.
Fig. 3: Posterior PDF for the SIDM cross-section probed by classical dwarf spheroidals according to the concentration–mass relation from ref. 24.

Similar content being viewed by others

References

  1. Tulin, S. & Yu, H.-B. Dark matter self-interactions and small scale structure. Phys. Rep. 730, 1–57 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  2. Bullock, J. S. & Boylan-Kolchin, M. Small-scale challenges to the ΛCDM paradigm. Annu. Rev. Astron. Astr. 55, 343–387 (2017).

    Article  ADS  Google Scholar 

  3. Walker, M. G. et al. A universal mass profile for dwarf spheroidal galaxies? Astrophys. J. 704, 1274–1287 (2009).

    Article  ADS  Google Scholar 

  4. Wolf, J. et al. Accurate masses for dispersion-supported galaxies. Mon. Not. R. Astron. Soc. 406, 1220–1237 (2010).

    ADS  Google Scholar 

  5. Boylan-Kolchin, M., Bullock, J. S. & Kaplinghat, M. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon. Not. R. Astron. Soc. 415, L40–L44 (2011).

    Article  ADS  Google Scholar 

  6. Boylan-Kolchin, M., Bullock, J. S. & Kaplinghat, M. The Milky Way’s bright satellites as an apparent failure of ΛCDM. Mon. Not. R. Astron. Soc. 422, 1203–1218 (2012).

    Article  ADS  Google Scholar 

  7. Battaglia, G. et al. The kinematic status and mass content of the Sculptor dwarf spheroidal galaxy. Astrophys. J. 681, L13 (2008).

    Article  ADS  Google Scholar 

  8. Amorisco, N. C. & Evans, N. W. Dark matter cores and cusps: the case of multiple stellar populations in dwarf spheroidals. Mon. Not. R. Astron. Soc. 419, 184–196 (2012).

    Article  ADS  Google Scholar 

  9. Walker, M. G. & Peñarrubia, J. A method for measuring (slopes of) the mass profiles of dwarf spheroidal galaxies. Astrophys. J. 742, 20 (2011).

    Article  ADS  Google Scholar 

  10. Strigari, L. E., Frenk, C. S. & White, S. D. M. Dynamical models for the Sculptor dwarf spheroidal in a ΛCDM universe. Astrophys. J. 838, 123 (2017).

    Article  ADS  Google Scholar 

  11. Pontzen, A. & Governato, F. Cold dark matter heats up. Nature 506, 171–178 (2014).

    Article  ADS  Google Scholar 

  12. Sawala, T. et al. The APOSTLE simulations: solutions to the Local Group’s cosmic puzzles. Mon. Not. R. Astron. Soc. 457, 1931–1943 (2016).

    Article  ADS  Google Scholar 

  13. Dutton, A. A. et al. NIHAO V: too big does not fail—reconciling the conflict between ΛCDM predictions and the circular velocities of nearby field galaxies. Mon. Not. R. Astron. Soc. 457, L74–L78 (2016).

    Article  ADS  Google Scholar 

  14. Wetzel, A. R. et al. Reconciling dwarf galaxies with ΛCDM cosmology: simulating a realistic population of satellites around a Milky Way-mass galaxy. Astrophys. J. Lett. 827, L23 (2016).

    Article  ADS  Google Scholar 

  15. Fattahi, A. et al. The cold dark matter content of Galactic dwarf spheroidals: no cores, no failures, no problem. Preprint at https://arxiv.org/abs/1607.06479 (2016).

  16. Spergel, D. N. & Steinhardt, P. J. Observational evidence for self-interacting cold dark matter. Phys. Rev. Lett. 84, 3760–3763 (2000).

    Article  ADS  Google Scholar 

  17. Kaplinghat, M., Tulin, S. & Yu, H.-B. Dark matter halos as particle colliders: a unified solution to small-scale structure puzzles from dwarfs to clusters. Phys. Rev. Lett. 116, 041302 (2016).

    Article  ADS  Google Scholar 

  18. Vogelsberger, M., Zavala, J. & Loeb, A. Subhaloes in self-interacting galactic dark matter haloes. Mon. Not. R. Astron. Soc. 423, 3740–3752 (2012).

    Article  ADS  Google Scholar 

  19. Rocha, M. et al. Cosmological simulations with self-interacting dark matter I: constant density cores and substructure. Mon. Not. R. Astron. Soc. 430, 81–104 (2013).

    Article  ADS  Google Scholar 

  20. Kaplinghat, M., Keeley, R. E., Linden, T. & Yu, H.-B. Tying dark matter to baryons with self-interactions. Phys. Rev. Lett. 113, 021302 (2014).

    Article  ADS  Google Scholar 

  21. Elbert, O. D. et al. Core formation in dwarf halos with self interacting dark matter: no fine-tuning necessary. Mon. Not. R. Astron. Soc. 453, 29–37 (2015).

    Article  ADS  Google Scholar 

  22. Kamada, A., Kaplinghat, M., Pace, A. B. & Yu, H.-B. How the self-interacting dark matter model explains the diverse galactic rotation curves. Phys. Rev. Lett. 119, 111102 (2017).

    Article  ADS  Google Scholar 

  23. Creasey, P. et al. Spreading out and staying sharp—creating diverse rotation curves via baryonic and self-interaction effects. Mon. Not. R. Astron. Soc. 468, 2283 (2017).

    Article  ADS  Google Scholar 

  24. Vogelsberger, M. et al. ETHOS—an effective theory of structure formation: dark matter physics as a possible explanation of the small-scale CDM problems. Mon. Not. R. Astron. Soc. 460, 1399–1416 (2016).

    Article  ADS  Google Scholar 

  25. Battaglia, G., Helmi, A. & Breddels, M. Internal kinematics and dynamical models of dwarf spheroidal galaxies around the Milky Way. New Astron. Rev. 57, 52–59 (2013).

    Article  ADS  Google Scholar 

  26. Navarro, J. F., Frenk, C. S. & White, S. D. M. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997).

    Article  ADS  Google Scholar 

  27. Burkert, A. The structure of dark matter halos in dwarf galaxies. Astrophys. J. 447, L25 (1995).

    Article  ADS  Google Scholar 

  28. Baes, M. & Van Hese, E. Dynamical models with a general anisotropy profile. Astron. Astrophys. 471, 419–432 (2007).

    Article  ADS  Google Scholar 

  29. Zavala, J., Vogelsberger, M. & Walker, M. G. Constraining self-interacting dark matter with the Milky Way’s dwarf spheroidals. Mon. Not. R. Astron. Soc. 431, L20–L24 (2013).

    Article  ADS  Google Scholar 

  30. Peñarrubia, J. et al. The impact of dark matter cusps and cores on the satellite galaxy population around spiral galaxies. Mon. Not. R. Astron. Soc. 406, 1290–1305 (2010).

    ADS  Google Scholar 

  31. Garrison-Kimmel, S., Boylan-Kolchin, M., Bullock, J. S. & Kirby, E. N. Too big to fail in the Local Group. Mon. Not. R. Astron. Soc. 444, 222–236 (2014).

    Article  ADS  Google Scholar 

  32. Papastergis, E., Giovanelli, R., Haynes, M. P. & Shankar, F. Is there a “too big to fail” problem in the field? Astron. Astrophys. 574, A113 (2015).

    Article  ADS  Google Scholar 

  33. Geringer-Sameth, A., Koushiappas, S. M. & Walker, M. G. Dwarf galaxy annihilation and decay emission profiles for dark matter experiments. Astrophys. J. 801, 74 (2015).

    Article  ADS  Google Scholar 

  34. Plummer, H. C. On the problem of distribution in globular star clusters. Mon. Not. R. Astron. Soc. 71, 460–470 (1911).

    Article  ADS  Google Scholar 

  35. McConnachie, A. W. The observed properties of dwarf galaxies in and around the Local Group. Astron. J. 144, 4 (2012).

    Article  ADS  Google Scholar 

  36. Bonnivard, V., Combet, C., Maurin, D. & Walker, M. G. Spherical Jeans analysis for dark matter indirect detection in dwarf spheroidal galaxies—impact of physical parameters and triaxiality. Mon. Not. R. Astron. Soc. 446, 3002–3021 (2015).

    Article  ADS  Google Scholar 

  37. An, J. H. & Evans, N. W. A cusp slope—central anisotropy theorem. Astrophys. J. 642, 752–758 (2006).

    Article  ADS  Google Scholar 

  38. An, J., Van Hese, E. & Baes, M. Phase–space consistency of stellar dynamical models determined by separable augmented densities. Mon. Not. R. Astron. Soc. 422, 652–664 (2012).

    Article  ADS  Google Scholar 

  39. Strigari, L. E. et al. A common mass scale for satellite galaxies of the Milky Way. Nature 454, 1096–1097 (2008).

    Article  ADS  Google Scholar 

  40. Campbell, D. J. R. et al. Knowing the unknowns: uncertainties in simple estimators of galactic dynamical masses. Mon. Not. R. Astron. Soc. 469, 2335–2360 (2017).

    Article  ADS  Google Scholar 

  41. González-Samaniego, A. et al. Dwarf galaxy mass estimators vs. cosmological simulations. Mon. Not. R. Astron. Soc. 472, 4786–4796 (2017).

    Article  ADS  Google Scholar 

  42. Ullio, P. & Valli, M. A critical reassessment of particle dark matter limits from dwarf satellites. J. Cosmol. Astropart. Phys. 1607, 025 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  43. Strigari, L. E., Koushiappas, S. M., Bullock, J. S. & Kaplinghat, M. Precise constraints on the dark matter content of Milky Way dwarf galaxies for gamma-ray experiments. Phys. Rev. D 75, 083526 (2007).

    Article  ADS  Google Scholar 

  44. Charbonnier, C. et al. Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future gamma-ray observatories—I. The classical dSphs. Mon. Not. R. Astron. Soc. 418, 1526–1556 (2011).

    Article  ADS  Google Scholar 

  45. Bonnivard, V. et al. Dark matter annihilation and decay in dwarf spheroidal galaxies: the classical and ultrafaint dSphs. Mon. Not. R. Astron. Soc. 453, 849–867 (2015).

    Article  ADS  Google Scholar 

  46. Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716–723 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  47. Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Comm. App. Math. Comp. Sci. 5, 65–80 (2010).

    Article  MathSciNet  Google Scholar 

  48. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.V. acknowledges support from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC grant agreement 279972 ‘NPFlavour’. H.-B.Y. acknowledges support from the US Department of Energy under grant number de-sc0008541 and the Hellman Fellows Fund. M.V. and H.-B.Y. are grateful to M. Walker for the binned kinematic dataset adopted in the analysis. They also acknowledge P. Creasey, M. Kaplinghat, M. Petač, L. Sales and P. Ullio for useful discussions, and thank organizers and participants of the stimulating workshops ‘Self-Interacting Dark Matter’ (Niels Bohr Institute) and ‘WIMPs vs non-WIMPs in dwarf spheroidal galaxies’ (University of Turin).

Author information

Authors and Affiliations

Authors

Contributions

M.V. performed the required analytical computations and numerical analysis. The original idea of the study is attributed to H.-B.Y., who supervised the work. Both M.V. and H.B.Y. contributed to writing the manuscript.

Corresponding author

Correspondence to Mauro Valli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valli, M., Yu, HB. Dark matter self-interactions from the internal dynamics of dwarf spheroidals. Nat Astron 2, 907–912 (2018). https://doi.org/10.1038/s41550-018-0560-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0560-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing