Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The inside-out planetary nebula around a born-again star

Abstract

Planetary nebulae are ionized clouds of gas formed by the hydrogen-rich envelopes of low- and intermediate-mass stars ejected at late evolutionary stages. The strong UV flux from their central stars causes a highly stratified ionization structure, with species of higher ionization potential closer to the star. Here, we report on the exceptional case of HuBi 1, a double-shell planetary nebula whose inner shell presents emission from low-ionization species close to the star and emission from high-ionization species farther away. Spectral analysis demonstrates that the inner shell of HuBi 1 is excited by shocks, whereas its outer shell is recombining. The anomalous excitation of these shells can be traced to its low-temperature [WC10] central star whose optical brightness has declined continuously by 10 magnitudes in a period of 46 years. Evolutionary models reveal that this star is the descendant of a low-mass star (1.1 M) that has experienced a ‘born-again’ event1 whose ejecta shock-excite the inner shell. HuBi 1 represents the missing link in the formation of metal-rich central stars of planetary nebulae from low-mass progenitors, offering unique insight regarding the future evolution of the born-again Sakurai’s object2. Coming from a solar-mass progenitor, HuBi 1 represents a potential end-state for our Sun.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Colour composite picture and spatial profiles of selected lines of HuBi 1.
Fig. 2: Long-term spectro-photometric evolution of IRAS 17514, the central star of HuBi 1.
Fig. 3: Evolutionary sequence of a PN progenitor with initial mass 1.1 M that experiences a VLTP.

Similar content being viewed by others

References

  1. Duerbeck, H. W. et al. The rise and fall of V4334 Sagittarii (Sakurai’s object). Astron. J. 119, 2360–2475 (2000).

    Article  ADS  Google Scholar 

  2. Hajduk, M. et al. The real-time stellar evolution of Sakurai’s object. Science 308, 231–233 (2005).

    Article  ADS  Google Scholar 

  3. Hu, J. Y. & Bibo, E. A. Discovery of a new cool WR star in a low excitation planetary nebula. Astron. Astrophys. 234, 435–438 (1990).

    ADS  Google Scholar 

  4. Pollacco, D. L. & Hill, P. W. The planetary nebula surrounding the WC 11 star IRAS 17514–1555. Mon. Not. R. Astron. Soc. 267, 692–696 (1994).

    Article  ADS  Google Scholar 

  5. Hamann, W.-R. in Hydrogen Deficient Stars Vol. 96 (eds Jeffery, C. S. & Heber, U.) 127 (Astronomical Society of the Pacific, San Francisco, 1996).

  6. Peña, M. The low excitation planetary nebulae HuDo 1 and HuBi 1 and their [WC10] central stars. Rev. Mex. Astron. Astr. 41, 423–433 (2005).

    ADS  Google Scholar 

  7. Leuenhagen, U. & Hamann, W.-R. Spectral analyses of late-type [WC] central stars of planetary nebulae: more empirical constraints for their evolutionary status. Astron. Astrophys. 330, 265–276 (1998).

    ADS  Google Scholar 

  8. Corradi, R. L. M., Schönberner, D., Steffen, M. & Perinotto, M. Ionized haloes in planetary nebulae: new discoveries, literature compilation and basic statistical properties. Mon. Not. R. Astron. Soc. 340, 417–446 (2003).

    Article  ADS  Google Scholar 

  9. Draine, B. T. & McKee, C. F. Theory of interstellar shocks. Annu. Rev. Astron. Astr. 31, 373–432 (1993).

    Article  ADS  Google Scholar 

  10. Perea-Calderón, J. V., García-Hernández, D. A., García-Lario, P., Szczerba, R. & Bobrowsky, M. The mixed chemistry phenomenon in Galactic Bulge PNe. Astron. Astrophys. 495, L5–L8 (2009).

    Article  ADS  Google Scholar 

  11. Naito, H. et al. Five-year optical and near-infrared observations of the extremely slow nova V1280 Scorpii. Astron. Astrophys. 543, A86 (2012).

    Article  Google Scholar 

  12. Clayton, G. C. The R Coronae Borealis stars. Publ. Astron. Soc. Pac. 108, 225–241 (1996).

    Article  ADS  Google Scholar 

  13. Williams, P. M. Dust formation around WC stars. Proc. IAU 163, 335 (1995).

    ADS  Google Scholar 

  14. Williams, P. M. Eclipses and dust formation by WC9 type Wolf–Rayet stars. Mon. Not. R. Astron. Soc. 445, 1253–1260 (2014).

    Article  ADS  Google Scholar 

  15. Acker, A. & Neiner, C. Quantitative classification of WR nuclei of planetary nebulae. Astron. Astrophys. 403, 659–673 (2003).

    Article  ADS  Google Scholar 

  16. Blöcker, T. Evolution on the AGB and beyond: on the formation of H-deficient post-AGB stars. Astrophys. Space Sci. 275, 1–14 (2001).

    Article  ADS  Google Scholar 

  17. Schönberner, D. Asymptotic giant branch evolution with steady mass loss. Astron. Astrophys. 79, 108–114 (1979).

    ADS  Google Scholar 

  18. Zijlstra, A. A. The infrared [WC] stars. Astrophys. Space Sci. 275, 79–90 (2001).

    Article  ADS  Google Scholar 

  19. Acker, A., Gesicki, K., Grosdidier, Y. & Durand, S. Turbulent planetary nebulae around [WC]-type stars. Astron. Astrophys. 384, 620–628 (2002).

    Article  ADS  Google Scholar 

  20. García-Rojas, J. et al. Analysis of chemical abundances in planetary nebulae with [WC] central stars. II. Chemical abundances and the abundance discrepancy factor. Astron. Astrophys. 558, A122 (2013).

    Article  Google Scholar 

  21. Gesicki, K., Zijlstra, A. A. & Miller Bertolami, M. M. The mysterious age invariance of the planetary nebula luminosity function bright cut-off. Nat. Astron. 2, 580–584 (2018).

    Article  ADS  Google Scholar 

  22. Steffen, W. et al. Shape: a 3D modeling tool for astrophysics. IEEE Trans. Vis. Comput. Graphics 17, 454–465 (2011).

    Article  Google Scholar 

  23. Frew, D. J., Parker, Q. A., & Bojičić, I. S. The Hα surface brightness-radius relation: a robust statistical distance indicator for planetary nebulae. Mon. Not. R. Astron. Soc. 455, 1459–1488 (2016).

    Article  ADS  Google Scholar 

  24. Hamann, W.-R. & Gräfener, G. Grids of model spectra for WN stars, ready for use. Astron. Astrophys. 427, 697–704 (2004).

    Article  ADS  Google Scholar 

  25. Hainich, R. et al. Wolf-Rayet stars in the Small Magellanic Cloud. I. Analysis of the single WN stars. Astron. Astrophys. 581, A21 (2015).

    Article  Google Scholar 

  26. Reindl, N. et al. The rapid evolution of the exciting star of the Stingray nebula. Astron. Astrophys. 565, A40 (2014).

    Article  Google Scholar 

  27. Monet, D. G. et al. The USNO-B Catalog. Astron. J. 125, 984–993 (2003).

    Article  ADS  Google Scholar 

  28. Sutherland, R. S. & Dopita, M. A. Effects of preionization in radiative shocks. I. Self-consistent models. Astrophys. J. Suppl. S. 229, 34 (2017).

    Article  ADS  Google Scholar 

  29. Althaus, L. G. et al. The formation and evolution of hydrogen-deficient post-AGB white dwarfs: the emerging chemical profile and the expectations for the PG 1159-DB-DQ evolutionary connection. Astron. Astrophys. 435, 631–648 (2005).

    Article  ADS  Google Scholar 

  30. Miller Bertolami, M. M. New models for the evolution of post-asymptotic giant branch stars and central stars of planetary nebulae. Astron. Astrophys. 588, A25 (2016).

    Article  ADS  Google Scholar 

  31. Battich, T., Miller Bertolami, M. M., Córsico, A. H. & Althaus, L. G. Pulsational instabilities driven by the mechanism in hot pre-horizontal branch stars I. The hot-flasher scenario. Astron. Astrophys. 614, A136 (2018).

    Article  Google Scholar 

  32. Clayton, G. C. et al. Evolution of the 1919 ejecta of V605 Aquilae. Astrophys. J. 771, 130 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Some of the data presented in this article were obtained with ALFOSC, which is provided by the Instituto de Astrofísica de Andalucía (IAA) under a joint agreement with the University of Copenhagen and NOTSA. The Nordic Optical telescope (NOT) is installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma (Spain). This article is also based on observations carried out at the Observatorio Astronómico Nacional on the Sierra San Pedro Mártir (OAN SPM), Baja California, Mexico. We thank the daytime and night support staff at the OAN SPM for facilitating and helping obtain our observations. A.A. and C.M. acknowledge support through the CONACyT project CONACyT-CB2015-254132. G.R.-L. acknowledges support from Universidad de Guadalajara, Fundación Marcos Moshinsky, ProMoFID2018 and CONACyT (grant A1-S-12258). L.S. acknowledges support from PAPIIT grant IA-101316 (Mexico). L.F.M. is supported by Ministerio de Economía, Industria y Competitividad (Spain) grants AYA2014-57369-C3-3 and AYA2017-84390-C2-1-R (cofunded by FEDER funds). M.A.G. acknowledges support of the grant AYA 2014-57280-P, cofunded with FEDER funds. M.M.M.B. is partially supported through ANPCyT grant PICT-2016-0053 and MinCyT-DAAD bilateral cooperation program through grant DA/16/07. S.A.Z. was supported by the ITE-UNAM agreement 1500-479-3-V-04.

Author information

Authors and Affiliations

Authors

Contributions

M.A.G. planned the research project, programmed the observations, wrote the main body of the manuscript, and organized the writing of some subsections. A.A. performed the MAPPINGS simulations, C.M. the CLOUDY ones, and both devised the excitation nature of the inner and outer shells. C.K. estimated the ionizing flux necessary for the inner and outer shells. G.R.-L. reduced the imaging data and contributed to the analysis of the time evolution of the central star. H.T. analysed the spectrum of the central star using PoWR to determine its stellar parameters and abundances. L.S. and G.R.-L. obtained and reduced the high-dispersion spectroscopic observations, and together with L.F.M. and S.A.Z. analysed them using SHAPE. M.M.M.B. devised the post-AGB evolutionary scenario and computed the LPCODE VLTP evolutionary sequences. X.F. reduced the spectroscopic data and carried out the analysis of one-dimensional spectra and spatial profiles of emission lines. All authors contributed to the discussion of the different sections of this work.

Corresponding author

Correspondence to Martín A. Guerrero.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Supplementary Figures 1–6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero, M.A., Fang, X., Miller Bertolami, M.M. et al. The inside-out planetary nebula around a born-again star. Nat Astron 2, 784–789 (2018). https://doi.org/10.1038/s41550-018-0551-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-018-0551-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing